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Abstract
We derive an analytical approximation in the framework of the radiative transfer theory for use
in the analysis of diffuse reflectance measurements. This model uses two parameters to describe
a material, the transport free path length, l, and the similarity parameter, s. Using a simple
algebraic expression, s and l can be applied for the determination of the absorption coefficient
Kabs, which can be easily compared to absorption coefficients measured using transmission
spectroscopy. l and Kabs can be seen as equivalent to the S and K parameters, respectively, in
the Kubelka–Munk formulation. The advantage of our approximation is a clear basis in the
complete radiative transfer theory. We demonstrate the application of our model to a range of
different paper types and to fabrics treated with known levels of a dye.
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1. Introduction

The analysis and optimization of the reflective characteristics
of a range of materials which exhibit strong multiple
scattering is of great importance for a number of technological
applications, such as the manufacture of paper and the
application of paints and other coatings. This is also the case
for spectral transmission in the development of UV sunblocks,
for example. Such an analysis is usually performed on the
basis of Kubelka–Munk theory (KMT) (Kubelka and Munk
1931). However, there are several shortcomings of KMT. In
particular, this theory does not operate directly with standard
notions of the radiative transfer theory like the phase function,
the single scattering albedo, and the extinction coefficient
(Chandrasekhar 1960). Also, KMT is not able to describe the
angular dependence of the reflectance. It is a two-flux model,
which can be obtained from the radiative transfer equation
by assuming an isotropic distribution for the intensity of the
multiply scattered diffuse radiation. With this in mind, we
design here a simple optical model for multiple scattering
materials, which is more accurate than that given by KMT for
the small absorption case and has a solid theoretical basis.

The paper is composed of two sections. The first
section is devoted to advances in theoretical understanding
of light reflection and transmission by bright multiple
scattering materials. We derive simple equations for the
diffuse transmittance and reflectance. Also, corresponding
solutions for reflection and transmission functions are given.
Experimental measurements of the diffuse spectral light
reflectance by some example materials are given in the second
section. We derive from the measurements such important
characteristics of various materials as the transport mean free
path, l, the similarity parameter, s, and also the absorption
coefficient Kabs in the visible and near IR.

The geometrical thickness of most the materials we choose
to study exceeds the scattering mean free path ls defined as
the inverse value of the scattering coefficient Ksca. Due to this
fact bright materials are opaque and multiple light scattering
dominates. Therefore, light waves perform a random walk
with an average step length and velocity. The average step
length is given by l. The transport mean free path is defined as
the average distance over which a light wave completely loses
memory of its original propagation direction. Therefore, l is
the single most important characteristic of any multiply light
scattering material.
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The similarity parameter, s, is defined as s =
√

1−ω0
1−gω0

,

where ω0 = 1 − Kabs/(Kabs+K sca) is the single scattering
albedo, which equals one for non-absorbing media, and g is
the average cosine of scattering angle. All materials absorb
light in various degrees depending on the structure of a given
material. Therefore, s generally differs from zero. s is a
function of wavelength; it determines the strength of light
reflection and absorption for a semi-infinite layer. A semi-
infinite layer is defined as a layer whose thickness can be
increased without changes in its reflective properties. van
de Hulst (1974) has shown that the diffuse reflectance of
light from a semi-infinite layer under diffuse light illumination
conditions is determined almost exclusively by the parameter
s. Therefore, only this parameter can be derived from the
corresponding measurements.

The main task of this paper is to derive the local optical
characteristics of a material such as l, s and Kabs from
measurements of the diffuse light reflectance in the spectral
range 400–1000 nm. The experiments for finite layers of
strongly light scattering media are performed.

2. Theory

Let us derive a set of equations, which can be used to determine
the pair (l, s) and also Kabs from experimental measurements
of light reflection or transmission.

First of all we find simple analytical equations for diffuse
reflection and transmission coefficients of optically thick layers
in the weakly absorbing limit. This can be done as follows. To
start with, we take a finite but optically thick layer illuminated
by diffuse light and relate its diffuse transmission t and
reflection r coefficients to the coefficient of diffuse reflection
r∞ for the case of a semi-infinite layer having the same optical
characteristics.

For this, we truncate the semi-infinite layer at an optical
thickness, τ = Kextz0 � 1 (Kext= K abs+K sca is the extinction
coefficient of a layer and z0 is the depth; see figure 1). Because
the medium as considered in figure 1 is semi-infinite, the values
of reflection coefficients for the whole layer starting at z = 0
and also a sub-layer starting at z = z0 coincide. Due to
highly developed multiple light scattering in the system under
consideration, the two-layer system as shown in figure 1 can be
considered as a single optically thick layer of the geometrical
thickness z0 over an underlying Lambertian surface with
albedo equal to r∞.

It is easy to show that the diffuse reflection of such
a system (equal to r∞ by definition) under diffuse light
illumination conditions is related to the diffuse reflection of r
of the upper layer by the following equation:

r∞ = r + tr∞t

1 − rr∞
, (1)

where t is the diffuse transmittance of the upper layer (see
figure 1). The dominator accounts for multiple reflections
between the layer and the underlying surface with the
Lambertian albedo r∞. On the other hand, the value of r∞ can
be presented as a sum of the reflection (r ) from the upper layer

z=z
0

z=0

Figure 1. Schematic of a semi-infinite fabric layer, with an
imaginary dividing plane at z = zo.

shown in figure 1 and the contribution �r from the bottom
layer. So we can write

r∞ = r + �r, (2)

where a simple physical consideration allows us to present �r
as the product of following three processes:

• the transmittance t by the upper layer;
• the reflectance r∞ from the bottom layer;
• the attenuation κ of light reflected from the lower layer

during the propagation process in the upper layer.

It is known from the general radiative transfer theory (van
de Hulst 1980) that the attenuation κ can be described by the
exponent (κ = exp(−γ τ)) for the case of optically thick layers
as discussed here. So, finally, we have

�r = tr∞e−γ τ , (3)

where γ is called the diffusion exponent. The value of γ

can be calculated from the corresponding characteristic integral
equation as described by van de Hulst (1980); τ is the optical
thickness, defined above. For the case of weakly absorbing
media, γ is given simply by the following equation (van de
Hulst 1980):

γ = √
3 (1 − ωo) q, (4)

where ω0 = 1− Kabs/Kext is the probability of photon survival
in a single scattering process (close to one for an optically
bright material) and q = 1 − g is the symmetry parameter,
which is equal to the ratio le/ l, where le = K −1

ext . It is known
that for isotropic scattering (scattering in any direction occurs
with the same probability) l = le and, therefore, q = 1.
Materials such as textiles and paper are composed of scatterers
which are large compared to the wavelength of incident light.
Therefore, the value of q must be a small number (q � 1) due
to the predominant light scattering in the forward direction by
particles with sizes much larger than the wavelength of incident
radiation.

The comparison of equations (1) and (2) gives

�r = tr∞t

1 − rr∞
. (5)
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Comparing this with equation (3), we arrive at the
following relationship:

e−γ τ = t

1 − rr∞
, (6)

which shows that the transmission t can be related to the
reflection r using the following equation:

t = (1 − rr∞)e−γ τ . (7)

It follows for non-absorbing media by definition that
r∞ = 1, ω0 = 1, γ= 0 and, therefore, equation (7) gives
t = 1 − r , which is just the energy conservation law for the
problem at hand. Also we have, as τ → ∞, t → 0 as it should
be; therefore, equation (7) has correct asymptotic limits.

The substitution of equation (7) into equation (3) gives

�r = (1 − rr∞)r∞e−2x , (8)

where x = γ τ . We obtain from equations (2) and (8) r∞ =
r + (1 − rr∞)r∞e−2x and, therefore,

r = r∞
(
1 − e−2x

)

1 − r 2∞e−2x
. (9)

This equation can be used for the determination of x
from measurements of the pair (r, r∞). This also offers a
possibility to determine the diffusion exponent γ , if τ is
measured independently (γ = x/τ).

It follows from equations (7) and (9) that

t =
(
1 − r 2∞

)
e−x

1 − r 2∞e−2x
. (10)

Therefore, we have reached our goal and related the
pair (r, t) to the value of r∞ (see equations (9) and (10)).
Interestingly, the pair (r, t) is completely defined, if values
(x, r∞) are known.

Now we can use the well-known result of exact radiative
transfer theory valid as ω0 → 1 (van de Hulst 1980):

r∞ = 1 − as, (11)

where a = 4/
√

3. This allows us to relate pairs (r, t) and (x, s)
analytically.

It appears that equation (11) is only valid for values of
ω0 > 0.999, which is too restrictive for our applications. So
we need to extend the range of validity of this equation. This
can be done as follows. We represent r∞ as series with respect
to ω0. Then it follows that

r∞ =
∞∑
j=0

σ jω
j
0 , (12)

where σ j are unknown coefficients. This series is poorly
convergent as ω0 → 1. Therefore, we need to introduce the
probability of photon absorption β = 1 − ω0 in equation (12).
Then it follows that

r∞ =
∞∑
j=0

σ j (1 − β) j (13)

or

r∞ = 1 − 〈 j〉β + 〈 j ( j − 1)〉β2

2
− · · · , (14)

where we introduced the following notation: 〈 j〉 ≡
∞∑
j=0

jσ j ,

〈 j ( j − 1)〉 ≡
∞∑
j=0

j ( j − 1)σ j , etc. Clearly, the largest

contribution to r∞ comes from large values of j . Therefore,
we may assume that 〈 j ( j − 1)〉 ≈ 〈 j 2〉 and similar for higher-
order terms. This allows us to derive

r∞ = 1 − 〈 j〉β +
〈
j 2

〉
β2

2
− . . . = e−Nβ . (15)

The constant N can be found from the comparison of
equation (15) as β → 0(r∞ = 1 − Nβ) with equation (11).
In particular, it follows that

N = as

β
(16)

and, therefore,
r∞ = e−y, (17)

where y = as; s is the similarity parameter. This means
that the similarity parameter s can be determined from
measurements of r∞.

Finally, we can write for the pair (t, r) using
equations (9), (10), (17):

r = e−y − e−2x−y

1 − e−2x−2y
, (18)

t = e−x − e−x−2y

1 − e−2x−2y
. (19)

So we have obtained the relationships of diffuse
reflectance and transmittance with local optical characteristics
of the medium such as the pair (x, y) or (l, s). It follows
for weakly absorbing media that x/y = 0.75L/ l, where L
is the thickness of the scattering layer. Therefore, values of
l and s can be determined from reflectance and transmittance
measurements. Also, one can easily determine the absorption
coefficient to be Kabs = xy/4L = s2/ l.

It follows from equations (2), (3), (17) that r can be
represented by

r = r∞ − te−x−y . (20)

This equation holds for diffuse light illumination and
observation conditions. Let us imagine that a layer is
illuminated by a monodirectional beam along the direction ϑ0

from the normal to the layer. Then one obtains instead of
equation (20)

rd (ξ) = rd∞ (ξ) − td (ξ) e−x−y , (21)

where ξ = cos ϑ0, rd(ξ) is the diffuse reflectance under
monodirectional illumination by a wide light beam, and
td(ξ) is the diffuse transmittance under the same illumination
conditions. It is known (Zege et al 1991, Kokhanovsky 2004)
that rd∞(ξ) = ru(ξ)∞ and td(ξ) = tu(ξ), where u(ξ) is the
angular distribution of light in the Milne problem, i.e., for light
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escaping a semi-infinite non-absorbing layer with sources of
radiation placed at infinity inside the medium. This function
can be approximated as (Kokhanovsky 2004)

u (ξ) = 3
7 (1 + 2ξ) , (22)

independent of the specific scattering law. Due to the
reciprocity principle equation, (21) also holds for diffuse light
illumination conditions and observation along the direction
specified by the angle ϑ0.

Clearly, we have for the reflection function instead of
equation (21):

R (ξ, η, ϕ) = R∞ (ξ, η, ϕ) − T (ξ, η) e−x−y , (23)

where the reflection function T (ξ, η) is given by the
following formula: T (ξ, η) = tu(ξ)u(η) (due to the
reciprocity principle) and (Zege et al 1991, Kokhanovsky
2004) R∞(ξ, η, ϕ) = r D∞, where D = u(ξ)u(η)R−1

0∞(ξ, η, ϕ),
η = cos ϑ , ϑ is the observation angle from the normal to the
scattering layer, ϕ is the azimuth, and R0∞ is the reflection
function of a non-absorbing semi-infinite layer having the same
local scattering law as the finite turbid layer under study.

Summing up, we have presented here a number of
equations, which can be used to derive local optical
characteristics of materials from routine reflection or
transmission measurements for different observation and
illumination conditions. These parameters can be used to
predict the reflective and transmittive properties of a given
material for arbitrary values of L. The equations given here are
well known in the remote sensing literature (Zege et al 1991,
Kokhanovsky 2004). In the next section we will apply these
formulae to derive some important local optical characteristics
of paper and fabric using diffuse reflectance spectroscopy; the
same analysis could equally be applied to any other multiple
scattering substrate. In particular, the case of measurements
at a fixed observation angle for diffuse illumination conditions
will be studied. Then we need to use equation (21), substituting
ξ by η.

The accuracy of equation (21) compared to the solution of
the radiative transfer equation (Chandrasekhar 1960) is given
in figure 2 for the exactly solvable case of a plane-parallel layer
with polydispersed spherical water droplets. We have assumed
that the wavelength λ = 550 nm and the observation angle
ϑ = 8◦. It was assumed that droplets are characterized by
the gamma particle size distribution f (a) = Aa6 exp(−1.5a),
where A is the normalization constant. In this case, g = 0.85.
We see that the error is smaller than 2% at rd > 0.5, which
is quite suitable for retrievals performed in the next section
(for bright textiles and papers), especially taking into account
various uncertainties inherent to optics of textiles and papers
(e.g., possible close-packed media effects). Calculations were
carried out for different values of the single scattering albedo
ω0 (although in reality water is non-absorbing in the visible so
ω0 = 1). In calculations for the case of non-absorbing media,
the limit of equation (21) as ω0 → 1 was used:

rd (η) = 1 − tu (η) , (24)
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Figure 2. Percentage error in diffuse reflectance, calculated using
equation (21) as a function of diffuse reflectance, relative to the exact
radiative transfer theory for various values of single scattering
albedo.

where

t = 1

1 + 0.75τ (1 − g)
. (25)

The accuracy at small values of τ can be increased using
the constant 1.072 instead of 1.0 in the first term of the
denominator of equation (25) (Kokhanovsky 2004).

3. Experiment

Measurements of the diffuse reflectance, rd(ϑ), for a variety
of different types of paper (lens tissue, manila, white tissue
and blue tissue) and fabrics dyed with different levels of
a dye were performed using a Hunterlab UltraScan Pro
diffuse reflectance spectrometer. A diffuse illumination–
monodirectional observation scheme was used. Samples of
interest are presented to a 25.4 mm port in the side of an
‘integrating sphere’, and the sample is folded so as to obtain
a series of different thicknesses corresponding to 1, 2, 4, 8, 16
and 32 times the thickness of a single sheet of the sample. The
sample is backed with a light trap, i.e. with zero reflectance.
The illumination simulates the International Comission on
Illumination defined D65 illuminant. Data are collected over
the wavelength range 400–1000 nm. The collection angle,
ϑ = 8◦, and in this instance the specular reflection is included.
Since, in this instance, cos ϑ is close to 1 we conclude that the
factor u defined above (see equation (22)) is close to 9/7.

The fabric samples were a set of woven cotton samples
treated with the dye Direct Violet 51. Six samples were
measured in this sequence—the new fabric, fabrics with dye at
2, 4, 8 and 16 ppm and a new fabric treated in the same solution
as that used to carry the dye, but without the dye (control).

For the fabric samples the reflectances lie in the range
0.7–0.95 in the visible region of the spectrum, whilst for
the paper samples the reflectance varies significantly across
the spectrum. Examples of the measured ‘semi-infinite’
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Figure 3. (a) Dependence of the ‘semi-infinite’ diffuse reflectance of different types of paper on the illumination wavelength. (b) Dependence
of the diffuse reflectance at 900 nm of the different paper types on their logarithm of their geometrical thickness measured in millimeters.
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Figure 4. (a) Dependence of the absorption coefficient on wavelength for a range of different paper types. (b) Dependence of the transport
mean free path on wavelength for a range of paper types.

reflectance for the set of papers as a function of the wavelength
are shown in figure 3(a); by semi-infinite we mean the
reflectance for 32 layers of the paper. These samples
demonstrate a range of different behaviors: manila shows a
high reflectance at long wavelengths with steadily decreasing
reflectance at shorter wavelengths; lens tissue exhibits large
reflectance across most of the spectrum with some reduction
towards shorter wavelengths; white tissue exhibits high
reflectance across most of the spectrum with a peak around
450 nm and a trough at the shortest wavelengths measured—
this is characteristic of the presence of a fluorescent whitening
agent (FWA). Finally, the blue tissue exhibits reflectance
properties broadly similar to that of lens tissue, but with the
addition of a broad trough corresponding to absorption by the
dye which makes it blue.

The change in diffuse reflectance rd as a function of
thickness is shown in figure 3(b) for this set of different
papers. The single layer thicknesses for the samples are as
follows: blue tissue, 0.18 mm; manila, 0.088 mm; white tissue,
0.059 mm; and lens tissue, 0.033 mm. The manila and white
tissue exhibit clear plateaus in the diffuse reflectance, whilst
the other paper types exhibit some flattening as a function of
increased thickness.

We have fitted equation (21) to diffuse reflectance data
measured as a function of thickness to obtain the transport free
path length, l, and the similarity parameter, s, from which can
be derived the absorption coefficient, Kabs = xy/4L = s2/ l.
Fitting was limited to sample measurements where rd > 0.5;
this limit is chosen a little arbitrarily as the point at which
the approximation deviates from the full theory by 2% (see
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Figure 5. (a) Dependence of the ‘semi-infinite’ diffuse reflectance on wavelength for fabrics dyed with Direct Violet 51 at different levels.
(b) Dependence of absorption coefficient on wavelength for fabrics dyed at different levels with Direct Violet 51. (c) Dependence of transport
free path length on wavelength for fabrics dyed at different levels with Direct Violet 51.

figure 2). Fitting was done using the Nelder–Mead simplex
method, implemented in Matlab. Applying this analysis to
five repeated measurements of a single sample we find a
standard deviation of 0.3% in the diffuse reflectance, 3.5%
standard deviation in the similarity parameter, and 2% standard
deviation in the transport free path length.

Rather than using the similarity parameter directly, we
will present the absorption coefficient, Kabs = s2/ l. The
Kabs spectrum and the l spectrum are shown in figure 4. The
manila exhibits relatively large absorption across the visible
range, increasing for shorter wavelengths. Blue tissue exhibits
a clear absorption peak at 600 nm (i.e. in the red region of
the spectrum), just as we would expect for a blue object. The
three tissue samples all exhibit an increase in absorption at the
shortest wavelengths. Since the white tissue clearly contains
a fluorescent agent, the results of the fit over the region of the

fluorescent emission band, typically ∼400–500 nm, are invalid
since the model does not take account of fluorescent emission.

The value of transport mean free path, l, is in the range
0.03–0.07 mm; paper samples with a higher mass density have
a smaller transport mean free path, as we would expect since
decreasing l corresponds to an increase in scattering. l depends
only weakly on the wavelength; this is due to the fact that
scatterers in paper are much larger than the wavelength of the
incident light.

The diffuse reflectance for the dyed fabrics is shown in
figure 5(a); a similar analysis to obtain l and Kabs is applied, the
results of which are shown in figures 5(b) and (c). The transport
free path length, l, is close to constant across the spectral range
with small deviations from the trend value at the location of
the peak in the absorption coefficient Kabs; for the highest
concentration of dye this amounts to ∼5% deviation from the
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Figure 6. Comparison between the specific absorption coefficient
obtained by solution state transmission UV–vis spectrophotometry
and diffuse reflectance measurement.

trend. There are two possible causes for this deviation: it may
be purely numerical, i.e. a result of the fitting process, or there
may be a physical mechanism, which means that the transport
free path length does change on the addition of dye.

Clearly, as we would expect for a visible dye, there is a
significant dependence of the absorption coefficient Kabs on
the wavelength. Kabs exhibits a strong peak with a maximum
at 575 nm.

We can convert Kabs, measured from the diffuse
reflectance to a specific absorption coefficient, εR, as follows:

εR = υKabs/c, (26)

where c is the dye concentration and υ = log10(e).
The multiplication by υ is required to account for slightly
differing unit definitions in the reflectance and transmission
measurements. This specific absorption coefficient, εR, is
directly comparable to the specific absorption coefficient,
ε, of the dye measured in solution using a UV–vis
spectrophotometer. Figure 6 shows εR for the fabric loaded
with 16 ppm Direct Violet 51 along with ε, measured in
solution. The spectral shapes for these spectra are very similar
in shape and intensity. However, in solution the absorption
maximum occurs at 550 nm. This type of shift has been
observed previously and can be attributed to changes in the
chemical environment of the dye which change its absorption
properties (Abbott et al 2004).

Figure 7 shows that the value of Kabs is proportional to the
dye concentration. This confirms the theoretical dependence
given above. Indeed, it was stressed above that s ∝ √

1 − ωo

or s ∝ √
Kabs/Kext. We can represent Kabs as

Kabs = K f
abs + K d

abs, (27)

where f denotes a fabric and d denotes a dye.
Taking into account that absorption is weak and scattering

is strong, we may write Kext ≈ K f
ext. This means that
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Figure 7. The dependence of the dye absorption coefficient on the
dye concentration at 575 nm.

s ∝
√

K f
abs/K f

ext + K d
abs/K f

ext. It is reasonable to assume

that K d
abs ∼ cα, where α is the dye bulk absorption

coefficient (Kokhanovsky 2004). So we expect that s2 must
be proportional to c because K f

abs � K f
ext in the spectral

range studied. This proportionality is confirmed by figure 7.
The specific absorption coefficient, εT , measured using UV–
vis spectrophotometry at the peak in the absorption spectra
is 4.69 × 104 cm2 g−1, this compares well with a value of
εR = 3.93 × 104 cm2 g−1 obtained from the slope of figure 7
multiplied by log10(e).

4. Conclusions

We have used simple analytical equations for the analysis
of reflection and transmission properties of bright multiply
scattering materials. The accuracy of the applied equations for
the plane albedo, rd, is better than 2% for reflectances above
50%, which is the case for bright fabrics and papers. The
transport mean free path, l, was found to be in the range 0.03–
0.07 mm at the wavelength 600 nm for the papers studied,
with only minor spectral changes in the spectral region 400–
1000 nm. The similarity parameter, s, and the transport free
path length, l, measured here, can be used to model light
propagation in fabrics and papers for a wide range of different
illumination and observation conditions.

Acknowledgments

The authors are grateful to E P Zege, I L Katsev, and R Treloar
for important discussions on the optics of light scattering
media.

References

Abbott L C, Batchelor S N, Jansen L, Oakes J, Smith J R L and
Moore J N 2004 Spectroscopic studies of Direct Blue 1 in
solution and on cellulose surfaces: effects of environment on a
bis-azo dye New. J. Chem. 28 815–21

7

http://dx.doi.org/10.1039/b401055h


J. Opt. A: Pure Appl. Opt. 10 (2008) 035001 A Kokhanovsky and I Hopkinson

Chandrasekhar S 1960 Radiative Transfer (New York: Dover
Publications)

Kokhanovsky A A 2004 Light Scattering Media Optics (Berlin:
Springer)

Kubelka P and Munk F 1931 Ein Beitrag Zur Optik der Farbanstriche
Z. fur Techn. Physik 12 593–601

van de Hulst H C 1974 The spherical albedo of a planet covered with
a homogeneous cloud layer Astron. Astrophys. 35 209–14

van de Hulst H C 1980 Multiple Light Scattering (London:
Academic)

Zege E P, Katsev I L and Ivanov A P 1991 Image Transfer through
Scattering Media (Berlin: Springer)

8


	1. Introduction
	2. Theory
	3. Experiment
	4. Conclusions
	Acknowledgments
	References

