Category: Book Reviews

Reviews of books featuring a summary of the book and links to related material

Book review: Her Space, Her Time by Shohini Ghose

My next review is of Her Space, Her Time by Shohini Ghose. I picked this book up as a result of a review in New Scientist. It is in the spirit of Broad Band which covered the contributions of women to computing over the years – contributions which have historically been ignored. Her Space, Her Time does the same for women in physics, generally on the astrophysics and cosmology side of the subject.

The book is divided into seven chapters each covering an area of physics and a group of women who worked in those areas. The chapters cover star cataloguing (and rather more), the big bang, the space programme, radioactivity, nuclear fission, particle physics and dark matter/ beta decay. This results in a coverage which is approximately chronological.

There are some recurring themes in the book: women not allowed entry to universities for undergraduate and graduate studies, women not allowed employment in university departments and facilities (often the pretext is the lack of toilets for women), women not allowed employment at the same institution as their spouse (this seemed common in the US and its effect on the recruitment and promotion of women was noted as far back as 1966), being ignored by the Nobel Prize committee and (sometimes) their male collaborators. These women were frequently the only women in the room. Fleeing Nazi Germany (and Austria) is a theme too but that applies equally to men.

On a more positive note their work was often recognised and rewarded during their lifetimes by their scientific communities. In at least the case of Ernest Rutherford and Ernest Lawrence they had the support of senior scientists throughout their lives.

The Harvard Observatory features heavily in the first couple of chapters. Women originally became involved as “computers” analysing the stars in the photographic plates. They included Williamina Fleming, Annie Jump Cannon, Antonia Maury and Cecilia Payne-Gaposchkin with Anna Draper providing funding to the observatory via a bequest in the late 19th century. In they first instance they were analysing stars for brightness and then later for spectral features. A group of women were responsible for compiling the “Harvard” stellar classification scheme which classifies stars by temperature using the letters O, B, A, F, G, K, M (typically remembered by a sexist mnemonic). One of the women, Henrietta Swan Leavitt, discovered the relationship between brightness and period for stars which is central to measuring intergalactic (and shorter distances) and was key to understanding the scale of the galaxy and the universe. Over a very long period Harvard Observatory allowed women to be employed as astronomers, and finally become professors in astronomy. The transitions usually being the result of a change in observatory or university management.

The third chapter is a bit of an oddity, looking at women’s contributions to the space programme on the project management and rocketry side of things rather than physics as such.

The final four chapters are then an extended collection on nuclear physics starting with Marie Skłodowska-Curie, and the less well known Harriet Brooks who worked on the new subject of radioactivity in the late 19th century. Brooks worked with Rutherford, publishing in 1904 in Nature on their discovery of radon. Rutherford and Frederick Soddy would earn the Nobel Prize for the transmutation of elements whilst Brooks was left out. Rutherford and Brooks clearly had a long personal relationship, ending in 1933 on her death at the age of 56. Brooks had left physics research in 1907 when she married Frank Pitcher.

Chapter 5 largely concerns Lise Meitner who was involved in the discovery of nuclear fission with Otto Hahn with whom she worked closely for many years. Hahn received the Nobel Prize for their work on nuclear fission, whilst she did not – this has been seen as one of the more egregious omissions of the Nobel Prize Committee – Meitner was nominated for a Nobel Prize 48 times and was widely recognised as an expert in her field. Her position was made more difficult because she was Jewish, worked in Austria and with Hahn who despite protestations was a Nazi sympathiser at the very least.

Chapter 6 concerns cosmic rays and the photographic detection thereof. It starts with Bibha Chowdhuri who is from Ghose’s home city of Kolkata and was later to discover cosmic ray muons using this method. The focus of the chapter though is Marietta Blau and her student Hertha Wambacher who developed the method of photographic detection of cosmic rays. The Meitner/Hahn story is reprised here with Jewish Blau forced to leave Vienna in 1938 with her student Wambacher, a Nazi sympathiser, remaining to take credit. Elisa Frota-Pessoa, a Brazilian physicist, is mentioned somewhat incidentally towards the end of the chapter with Ghose stumbling on one of her (very prescient) publications whilst researching other work.

The book finishes with the slightly odd pairing of Wu Chien Shiung who was instrumental in the discovery of parity violation which won her colleagues Tsung-Dao Lee and Chen-Ning Yang the 1957 Nobel Prize in Physics (they specifically mentioned her in their acceptance speech) and Vera Rubin who is credited with discovering dark matter by measuring the rotation curves of galaxies and observing that they flatten at large radii – an indicator of the presence of extra, unseen matter.

Reading back through my notes, women were at the heart of modern physics through the 20th century, often those women were the only ones in the room – it is clear they were exceedingly capable. The men around them collected a dozen Nobel Prizes whilst the only woman from this book to win the Nobel Prize for Physics was Marie Skłodowska-Curie. Maria Goeppert Mayer shared the Nobel Prize for Physics in 1963 she is the only other woman to win in the 20th century. She is not included in this book, perhaps because her Nobel Prize meant she was already well known.

In the past I thought the Nobel Prize committee were simply a bit careless in failing to award women but reading this book it seems they were rather purposeful – the physics community knew these women, and the significance of what they had done, and many were nominated for a Nobel Prize, often repeatedly.

As a result of this book I am now interested in a parallel volume of Indian scientists in the West!

Book Review: Grace Hopper – Admiral of the Cyber Sea by Kathleen Broome Williams

After reading Broad Band by Claire L. Evans, about women in computing, I realised Grace Hopper was important, so I thought I’d hunt out a biography. I found Grace Hopper: Admiral of the Cyber Sea by Kathleen Broome Williams. Unusually I bought it second hand – my copy came from the Richard Stockton College of New Jersey Library Pomona, and has an austere, maroon cover.

Grace Hopper was born in New York City in 1906, she died in 1992. An undergraduate in mathematics she started a career in teaching at Vassar College but joined the Navy after the US joined the Second World War. She was posted to work on the Mark I computer at Harvard. She subsequently wrote the first software compiler, and was instrumental in the creation of the COBOL programming language. After “retiring” she then had a long career in the US Navy working on standardising their computing systems. After finally retiring from the Navy she worked for DEC for a few years until her death at the age of 86. She finished her career a rear admiral in the US Navy and has a battleship named for her (the USS Hopper) amongst numerous other rewards.

Grace Hopper gives some feel as to how it was to grow up in a relatively wealthy New York City family. The Hopper family had a holiday home in Wolfeboro, New Hampshire which, when she was small, was a day and a half travel to reach from New York City. She was brought up to be self-sufficient and trained in mathematics. Her father worked in insurance and was a double amputee – he wanted to make sure his children could fend for themselves should he die although he survived to a fair age.

Hopper studied mathematics first at Vasser College before going to Yale for a PhD in mathematics. She married Vincent Hopper in 1930, they bought a summer home of their own in Wolfeboro for $450 – part of a wedding gift. They were divorced in 1941 although it was not something she talked about, despite giving numerous interviews later in her live. Grace Hopper does not indicate the grounds for her divorce. After gaining her degree she became a lecturer in Vasser College where she was an excellent and committed teacher.

When America joined the war she was keen to serve in the US Navy which she achieved following some struggle. Fundamentally they were not keen to employ women, furthermore she was older than the Navy typically recruited, technically underweight and in a reserved occupation (as a lecturer in mathematics). Eventually she joined in 1942, and finally entered service in 1944, after training. She was proud to work in the Navy throughout her life and even whilst employed in industry she continued in the reserve service. In her Navy service she found a link with the dignitaries, including royalty, she met in later life.

Her naval placement was with the Mark I computer at Harvard, invented by Howard Aiken and built by IBM. It was the first programmable electromechanical computer in the world. Based on the slightly older relay technology rather than valves found in successors it was used principally for ballistic calculations as well as calculations of various function tables. Aiken was pretty tough to work with but Hopper clearly knew how to handle him and held him in high regard. She worked on many of the Mark I’s smaller programming jobs as well as doing more than her share of documentation and report writing.

One issue with the Mark I was that it was programmed with paper tape, the programs and data are stored as a pattern of holes 3-4mm across punched out the tape. There was a lot of paper around, as well as the disks of paper punched out from the tape. Sometimes one of the punched out disks was re-united with a hole causing an error, as Hopper pointed out “a hole getting back into a hole”!

After the war it was clear she would not be able to continue at Harvard, so she let to work on the UNIVAC at the Eckert–Mauchly Computer Corporation, later bought by the Rand Corporation and then IBM. Through Hopper’s life we see the birth and maturing of the new computing industry.

Hopper realised there was a need for standardisation in programming languages. There were an increasing number of different types of computer around, and the maintenance and programming of such computers was a bigger job than had initially been realised. Standardisation reduces this problem because a program written for one computer can be run on another. This is how COBOL was born, the Navy sponsored the Committee on Data Systems Languages (CODASYL) which created the COBOL programming language which was derived from Hopper’s FLOW-MATIC language developed for the UNIVAC.

As a scientist and software developer for 30 years I was scarcely aware of COBOL, yet it comprised approximately 80% of running code in the late nineties, according to Gartner. I imagine that figure has not dropped greatly. There is clearly a huge body of COBOL “dark matter” that software developers don’t talk about. The reason for COBOL’s obscurity seems to be the disdain of the academic computer science community, FORTRAN – born at the same time – suffers a similar disdain.

During her time working on UNIVAC Hopper maintained her Navy connection through a reserve position, and in 1966 – at the age of 60 – she retired from the reserve to work full time for the Navy at the Pentagon. She continued to work in the Navy until 1986 when she left to join DEC, at the age of 80!

In this book Grace Hopper comes out as an exceptional character. Her great skills were rooted in teaching, the drive to build a compiler was partly making her own life easier but also democratising the process of programming. She also saw the importance of raising a generation of programmers. She was very personable but seemed to have virtually no personal life. She drank moderately and smoked heavily for most of her life, and clearly had a bit of a hording problem towards the end. She was a life-long Republican and saw little value in the women’s rights movement – her own enormous success giving her the impression that there was no inequality to address.

Throughout her life, well into the period others might consider retiring, she was was engaged in a full schedule of public speaking. She gained many rewards, and a great deal of recognition in her lifetime.

I really enjoyed this book, the only place my interest lessened slightly was in the chapter describing administrative reorganisations of the US Navy. I am in awe of the achievements of Grace Hopper.

Book review: How the world thinks by Julian Baggini

Whilst economising during a period without work I thought I would turn to other books in the house to read and review. This is how I came to How the World Thinks: A Global History of Philosophy by Julian Baggini. This is not to say I am uninterested in philosophy but, as a scientist in the Western tradition, philosophy was a substrate on which I worked without thinking.

How the World Thinks aims to provide an outline of the major schools of philosophy around the world, Baggini alludes to the fact that in the Western world university philosophy departments are more accurately described as “Western philosophy” departments. Comparative philosophy, apparently, is not really a thing. Baggini also talks about how “academic” philosophy impacts the culture in which it sits – a process called sedimentation. Baggini cites the 5rd-3th centuries BCE as when the major philosophical traditions were born (know as the Axial Age), when understanding of the world started moving from myth to some sort of reason.

How the World Thinks is divided into four parts and an additional concluding part; these cover the nature of philosophy in different traditions, the nature of the world, who we are and how philosophy impacts the way we live. The text typically covers Far Eastern traditions (China and Japan), India, Islamic and Western traditions with some references to African philosophy. Rather strangely he mentions Russian philosophy in the final part, only to say really he hasn’t mentioned Russian philosophy!

Western philosophy is built around “reason” and nowadays is largely separate from theology, there are empiricist and rationalist schools within this. Empiricists believing on observing the world and building models based on observation, whilst rationalist believe the world can be understood with pure thought. East Asian philosophy is more concerned with a “way” of living in the world which is difficult if not impossible to explain in words. Indian philosophy lies between these two. Interestingly yoga is part of a philosophical tradition which sees it as a way of better seeing how the world really is.

The next part of the book concerns the processes that govern the world: time, karma, emptiness, naturalism, unity, and reductionism. Karma is a particularly Indian concept, and is linked by Baggini to the caste system which DNA evidence dates back to the 6th century AD. East Asian philosophy is more concerned with emptiness / nothingness then Western philosophy – it struck me reading The First Astronomers that Australian Aboriginal constellations include the absence of stars into their constellations. Naturalism, a regard for nature which links the natural world to the human, is stronger in East Asian philosophies – Chinese art incorporated natural scenes long before Western art. Islamic philosophy is strong on unity, whilst Western philosophy likes reductionism.

Part 3 concerns the self, contrasting the East Asian view of the self which is defined in relationship to others, similarly in Africa, with the indivisible, individualistic self of the West. There is even the idea that the self does not exist, as such. Baggini refers to the indivisible self as “atomistic” which harks back to the ancient Greek definition but for a modern scientist this is a bit confusing because an atom is a very different thing. Indian philosophy thinks in terms of a self that is reborn but need not hold any recollection of previous selves. Perhaps not made explicit in this part but one gets the feeling that other philosophies have a strong sense of being concerned with individual self-improvement, by acting in the right way, leading the right life one improves through each rebirth.

The final part of the book concerns how the world lives, how the philosophy discussed in earlier chapters is reflected in culture. This starts with a consideration of the idea of “harmony” in China, this can have elements of hierarchy and misogyny. Although Baggini highlights that it is understood that hierarchy is not bad in all cases, or even most. There is a chapter on “virtue” which as much as anything highlights that the meanings of words when translated can shift. We might think about the importance of “ritual” in Far Eastern cultures but equally we could call it “cultural grammar” which has different connotations in English .

I found How the World Thinks straightforward enough to read, the chapters are a convenient size and the style is readable. It also thought provoking, in that it challenges the deepest assumptions about the way I lead my intellectual life – in some ways it parallels The First Astronomers by Duane Hamacher in this respect.

Book review: Broad Band by Claire L. Evans

Broad Band by Claire L. Evans book cover. Cream background with a silhouette of a woman made from circuit boards

This review is of Broad Band by Claire L. Evans, subtitled The Untold Story of the Women Who Made the Internet. It is arranged thematically with each chapter focusing on a couple of women moving in time from the first chapter, about Ada Lovelace in the 19th century, through to the early years of the 21st century. The first part of the book covers the early period of computing up to the mid-sixties, the second part the growth of networked computing through the seventies and eighties with the final part covering the rise of the World Wide Web and services devoted to women.

The first chapter introduces us to Ada Lovelace, sometimes heralded as the first programmer which is a somewhat disputable claim. More importantly she was clearly a competent mathematician and excelled in democratising and explaining the potential of the mechanical computing engines that Charles Babbage was trying, and largely failing, to build. More broadly this chapter covers the work of the early human “computers”, who were often women, employed to carry out calculations for astronomical or military applications. Following on from this role, by 1946 250,000 women were working in telephone exchanges (presumably in the US).

Women gained this role as “computers” for a range of reasons. In the 19th century it was seen as acceptable work for educated women whose options were severely limited – as they would be for many years to come, excepting war time. The lack of alternatives meant they were very cheap to employ. Under the cover of this apparently administrative role of “computer” women made useful, original contributions to science albeit they were not recognised as such. Women were seen as good at this type of meticulous, routine work.

When the first electronic computers were developed in the later years of the Second World War it was unsurprising that women were heavily involved in their operation partly because of their previous roles, and partly because men had been sent to fight. There appears to have been an attitude that the design and construction of such machines was men’s work and their actual use, the physical act of programming was women’s work – often neglected by those men that built the machines.

It was in this environment that the now renowned Grace Hopper worked. She started writing what we would now describe as compilers to make the task of programming computers easier. She was also instrumental in creating the COBOL programming language, reviled by computer scientist in subsequent years but comprising 80% of the world’s code by the end of the 20th century. The process that Hopper used to create the language, a committee involving multiple companies working towards a common useful goal, looks surprisingly modern.

In the sixties there was a sea-change for women in computing, it was perceived that there was a shortage of programmers and the solution was to change programming into an engineering science which had the effect of gradually pushing women out of computing through the seventies. It was at this time that the power of computer networks started to be realised.

The next part of the book covers networking via a brief diversion into mapping the Mammoth Cave system in Kentucky which became the basis of the first network computer game: Colossal Cave Adventure. I was particularly impressed by Project One, a San Francisco commune which housed a mainframe computer (a Scientific Data Systems 940) which had been blagged from a company by Pam Hardt-English. In the early seventies it became the first bulletin board system (BBS) – a type of system which was to persist all the way through to the creation of the World Wide Web (and beyond). Broad Band also covers some of the later bulletin board systems founded by women which evolved into women’s places on the Web, BBS were majority male spaces for a long time. In the meantime Resource One also became the core of the San Francisco Social Services Referral Directory which persisted through until 2009, this was a radical innovation at the time – computers used for a social purpose outside of scientific or military applications.

The internet as we know it started with ARPANET in 1969. Broad Band covers two women involved in the early internet – Elizabeth (Jake) Feinler who was responsible for the Resource Handbook – a manually compiled directory of computers, and their handlers, on ARPANET. This evolved, under her guidance, to become the WHOIS service and host.domain naming convention for internet addresses. The second woman was Radia Perlman, who invented the Spanning Tree Protocol for ethernet whilst at DEC in 1984.

This brings us, in time, to the beginning of the World Wide Web. The World Wide Web grew out of the internet. Hypertext systems had been mooted since the end of the Second World War but it wasn’t until the eighties that they became technically feasible on widely available hardware. Broad Band cites British Wendy Hall and Cathy Marshall at Rank Xerox as contributors to the development of hypertext systems. These were to be largely swept away by Tim Berners-Lee’s HTML format which had the key feature of hyperlinking across different computers even if this made the handling of those links prone to decay – something handled better by other non-networked hypertext systems. The World Wide Web grew ridiculously quickly in the early nineties. Berners-Lee demonstrated a rather uninspiring version at HyperText ’91 and by HyperText ’94 he was keynote speaker.

There is a a brief chapter devoted to women in gaming. Apparently Barbie Fashion Designer sold 600,000 units in 1996 more than Doom and Quake! There was a brief period when games were made very explicitly for girls – led to a degree by Brenda Laurel who had done extensive research showing boys strive for mastery in games, whilst girls were looking for a collaborator to complete a task. These ideas held sway for a while before a more diverse gaming market took hold which didn’t divide games so much by gender.

It is tempting for me to say that where women have made their mark in computing and the internet is in forming communities, communicating the benefits of technology and making them easier to use – in a reprise of the early pioneering women in science – because that is what women are good at. However, this is the space in which women have been allowed by men – it is not a question of innate ability alone.

I found this book really interesting, it is more an entry point into the topic of women in computing than a comprehensive history. It has made me nostalgic for my computing experiences of the eighties and nineties, and I have added a biography of Grace Hopper to my reading list.

Book review: The First Astronomers by Duane Hamacher

My next review is of First Astronomers: How Indigenous Elders read the stars by Duane Hamacher. It is fair to say that Western astronomers, and other Western scientists have not treated Indigenous populations, and their knowledge, with a great deal of respect. Even now astronomers are in dispute with Indigenous populations in Hawaii over the siting of telescopes. In this book Hamacher tries to redress this imbalance and in my view does a good job of treating his interviewees, and their knowledge, with respect.

Western astronomers are not alien to interacting with people outside their professional group as part of their research most notably using historical data, like Chinese records of supernova but also amateur observers play an important in modern astronomy – particularly in the observation of comets and the like and other transient phenomena accessible using modest equipment.

The book starts with a prologue describing the background to the book and introducing a number of the Indigenous people who contributed, in the longer frontspiece they are listed as co-authors. They are largely from Australia but there are references to New Zealand, North American Native Americans, Artic peoples, South American and Africa groups.

Hamacher is an astronomer by profession and this has a bearing on this interviews with Indigenous Elders. In the past anthropologists have talked to Elders about their star knowledge and a lack of astronomical knowledge has led to mis-interpretation. I was intrigued to learn that in Western mythology the star name “Antares” is derived from the greek “anti Mars” – since Mars and Antares, in the same part of the sky and with a reddish hue are often confused!

The book is then divided thematically into chapters relating to different sorts of stars (including the moon). These are The Nearest Star (the sun), The Moon, Wandering Stars (planets), Twinkling Stars, Seasonal Stars, Variable Stars, Cataclysmic Stars (supernova and the like), Navigational Stars and Falling Stars (meteors and craters).

The big difference a Western reader will see is that Indigenous knowledge is transmitted via oral traditions, incorporating song and dance. Oral traditions are about creating a story around some star locations that provide useful information like where and when to hunt a particular animal or plant a particular crop, or where you are and how to get to where you want to be . The story linked to the stars allows it to be transmitted to the next generation without error. They are mnemonics rather than an attempt to describe a factual truth. This is obvious in Indigenous oral traditions which are still alive but I suspect it would have been the case for the oral traditions of Western Europe which give us our modern constellations.

Oral traditions can be very powerful, there is a group of craters in Australia (the Henbury Craters) which were created by a meteor impact around 4200 years ago – Aboriginal oral traditions have held this knowledge of their creation across that period of time.

Indigenous constellations can overlap and change through the seasons, they also incorporate dark space – particularly in the Milky Way. These constellations are locally determined to fit with local conditions, and land features used as landmarks.

As well as maritime navigation where the stars are used directly for finding direction, the stars are also used as a navigational aid for terrestrial travel – the routes are learnt in the dark of the winter using the stars as a map of the ground (picking stars which approximate the locations on the ground). These “songlines” are reflected in some modern day highways in Australia.

What comes through from the book is that Indigenous astronomers were very astute observers of the sky, noting phenomena including the varying twinkle of stars (including colour and intensity variations), the 8 year period of Venus returning to the same location in the sky, variable stars, sunspots and their 11 year cycle, the sounds associated with aurora and so forth. Some of these phenomena were not widely recognised by astronomers in the West until into the 19th century. In addition they had a clear understanding of many phenomena: that the moon reflected the light of the sun, that the earth was a sphere, that craters were the result of rocks falling from the sky.

Unsurprisingly, I was constantly comparing with Western astronomy. The great divergence was sometime around the end of the 16th century when Western astronomers started making detailed written records of the locations of stars and planets and using mathematics to understand them, and then moved on to the use of telescopes. I can’t help feeling the Indigenous people were held back by a lack of writing.

What comes through at the end of the book is that in the Indigenous communities have a long history of passionate and astute astronomers, dedicated to their role, and increasingly they are taking part and excelling in Western astronomy and astrophysics.