Tag: history of science

Book review: The First Astronomers by Duane Hamacher

My next review is of First Astronomers: How Indigenous Elders read the stars by Duane Hamacher. It is fair to say that Western astronomers, and other Western scientists have not treated Indigenous populations, and their knowledge, with a great deal of respect. Even now astronomers are in dispute with Indigenous populations in Hawaii over the siting of telescopes. In this book Hamacher tries to redress this imbalance and in my view does a good job of treating his interviewees, and their knowledge, with respect.

Western astronomers are not alien to interacting with people outside their professional group as part of their research most notably using historical data, like Chinese records of supernova but also amateur observers play an important in modern astronomy – particularly in the observation of comets and the like and other transient phenomena accessible using modest equipment.

The book starts with a prologue describing the background to the book and introducing a number of the Indigenous people who contributed, in the longer frontspiece they are listed as co-authors. They are largely from Australia but there are references to New Zealand, North American Native Americans, Artic peoples, South American and Africa groups.

Hamacher is an astronomer by profession and this has a bearing on this interviews with Indigenous Elders. In the past anthropologists have talked to Elders about their star knowledge and a lack of astronomical knowledge has led to mis-interpretation. I was intrigued to learn that in Western mythology the star name “Antares” is derived from the greek “anti Mars” – since Mars and Antares, in the same part of the sky and with a reddish hue are often confused!

The book is then divided thematically into chapters relating to different sorts of stars (including the moon). These are The Nearest Star (the sun), The Moon, Wandering Stars (planets), Twinkling Stars, Seasonal Stars, Variable Stars, Cataclysmic Stars (supernova and the like), Navigational Stars and Falling Stars (meteors and craters).

The big difference a Western reader will see is that Indigenous knowledge is transmitted via oral traditions, incorporating song and dance. Oral traditions are about creating a story around some star locations that provide useful information like where and when to hunt a particular animal or plant a particular crop, or where you are and how to get to where you want to be . The story linked to the stars allows it to be transmitted to the next generation without error. They are mnemonics rather than an attempt to describe a factual truth. This is obvious in Indigenous oral traditions which are still alive but I suspect it would have been the case for the oral traditions of Western Europe which give us our modern constellations.

Oral traditions can be very powerful, there is a group of craters in Australia (the Henbury Craters) which were created by a meteor impact around 4200 years ago – Aboriginal oral traditions have held this knowledge of their creation across that period of time.

Indigenous constellations can overlap and change through the seasons, they also incorporate dark space – particularly in the Milky Way. These constellations are locally determined to fit with local conditions, and land features used as landmarks.

As well as maritime navigation where the stars are used directly for finding direction, the stars are also used as a navigational aid for terrestrial travel – the routes are learnt in the dark of the winter using the stars as a map of the ground (picking stars which approximate the locations on the ground). These “songlines” are reflected in some modern day highways in Australia.

What comes through from the book is that Indigenous astronomers were very astute observers of the sky, noting phenomena including the varying twinkle of stars (including colour and intensity variations), the 8 year period of Venus returning to the same location in the sky, variable stars, sunspots and their 11 year cycle, the sounds associated with aurora and so forth. Some of these phenomena were not widely recognised by astronomers in the West until into the 19th century. In addition they had a clear understanding of many phenomena: that the moon reflected the light of the sun, that the earth was a sphere, that craters were the result of rocks falling from the sky.

Unsurprisingly, I was constantly comparing with Western astronomy. The great divergence was sometime around the end of the 16th century when Western astronomers started making detailed written records of the locations of stars and planets and using mathematics to understand them, and then moved on to the use of telescopes. I can’t help feeling the Indigenous people were held back by a lack of writing.

What comes through at the end of the book is that in the Indigenous communities have a long history of passionate and astute astronomers, dedicated to their role, and increasingly they are taking part and excelling in Western astronomy and astrophysics.

Book review: Margaret the First – A Biography of Margaret Cavendish by Douglas Grant

magaret_cavendishI have come across Margaret Cavendish in number of times in reading about the history of science, I think most recently in a biography of Christiaan Huygens. She is noted for attending a Royal Society meeting in 1666, and for being one of the earliest published female authors in England. She sounded very interesting so I picked up Margaret the First: A biography of Margaret Cavendish by Douglas Grant – one of the few biographies about her.

Margaret Cavendish was born in 1623 to the aristocratic Lucas family of Colchester and died at the relatively early age of 50 in 1673. As a child she was a keen writer, and picked up an interest in science from her brother John although as a girl her formal education was limited.

The Lucas’s were fairly heavily involved in the Civil War on the Royalist side. Margaret joined the household of the queen, Henrietta Maria, as a maid of honour in 1643. She fled to Paris with the queen’s household in 1644.  At this point William Cavendish (1st Duke of Newcastle), later to became Margaret’s husband enters the story – he was immensely wealthy and was Captain-General to the Royalist army North England. Following the Battle of Marston Moor he too fled to Europe – to Hamburg in the first instance.

William Cavendish was widower – his first wife, Elizabeth having died in 1643. Margaret and William met in Paris and were married in late 1645. Having read quite a lot of scientific biography I am starting to get a feel for what written resources are available to the biographer – in this case I suspect it was Margaret’s published writings and the financial records of her husband, which were most important. In exile William Cavendish was always struggling for money, although he seems to have had the gift of the gab since a number of times they appear on the brink of destitution which is resolved when William goes and talks to his creditors!

Whilst in Paris, Margaret dined with at least René Descartes and Thomas Hobbes – there was a fairly active salon culture in Paris at the time in which I believe women were moderately involved. In England involvement in intellectual circles appears to have been forbidden for women but perhaps it was a little more open in Paris.

The couple moved to Antwerp in 1648, where they lived in Rubens old house, again surviving on credit which William Cavendish often seemed to spend on horses! It was at this time that Margaret started to write for publication. Grant’s broad view of her output could be summarised as "needed an editor", she appeared to write straight to publication with little sign of returning to work to correct and edit for structure and coherence. 

Her early books were poetic with a theme of natural philosophy, this isn’t as outlandish as it first sounds – Erasmus Darwin was to write poetically about natural philosophy in the following century. Her atomic theories would read oddly to our eyes but were not inconsistent with prevailing theories of the time. She sat within the Classical / Cartesian school of natural philosophy with an emphasis on pure thought which in the second half of the 17th century was being displaced by a science driven by observation and experiment. In fact she wrote some criticism of the newly invented microscope. Her writing covers a wide range of forms (poetry, prose, plays, orations, letters), and a substantial fraction of it is what you might describe as romantic fiction – although The Blazing World has been described as proto-science fiction.

Margaret and her husband returned to England in 1660 following the death of Oliver Cromwell in 1658 and the Restoration of Charles II. After spending some time in London, whilst William Cavendish regained possession of his estates, the couple retired to the country from where Margaret promoted her writing – providing free copies of her books to universities and individuals. It is during this period that she attended a meeting of the Royal Society, Samuel Pepys is quite critical of her and the general impression was that men felt she shouldn’t have been there.

She died rather suddenly in 1673, a few years before her much older husband who died in 1676.

It would seem that Margaret Cavendish was a very bright young woman, who missed out almost entirely on any sort of education because she was a women. Her interest in science was promoted by her older brother John, her husband and his brother as well as extensive correspondence and dinners with leading intellectuals of the day arising from her time in Paris and Antwerp. Her work was published and promoted broadly most likely because of the power of her husband, which also served to mute criticism. She was widely seen as a rather eccentric character, in part this seems to be down to a vintage dress sense but her simply writing would probably been a factor too.

It would be nice to report that Margaret Cavendish was a pioneer, soon followed by other women into the public, scientific sphere but she wasn’t. Caroline Herschel’s work was presented to the Royal Society in 1788 – over 100 years later, exceptionally Queen Victoria became a member of the Royal Society but it wasn’t until 1945 that Kathleen Lonsdale and Marjory Stephenson became the first female fellows of the Royal Society. The first women to study for undergraduate degrees started in 1880 with Oxford and Cambridge not awarding degrees to women until 1920 and 1945 respectively.

This book was published in 1956, there are a limited number of biographies of Margaret Cavendish and although this one was entirely acceptable it is a bit dated and I can’t help feeling there will have been a lot of scholarly work done on her life in the intervening years.

Book review: The Man from the Future by Ananyo Bhattacharya

von_neumannThe Man from The Future by Ananyo Bhattacharya has been sitting on my bedside table in the "to be read" pile for a little while. I was aware of Von Neumann largely through his work on computers, and game theory.

The book is organised thematically, firstly on Von Neumann’s early years then on the various fields in which he made contributions.

Neumann János Lajos was born in Budapest in 1903, the Hungary style was to put the family name first – his father was ennobled in 1903 – hence the "von" and he Anglicised his forename to John when he moved to America in 1930. Hungary, and Budapest, in Von Neumann’s time was a hot bed of intellectuals many of whom fled Europe to America with the rise of the Nazis. For someone with a background in physics it is a bit of a Who’s Who – Eugene Wigner, Leo Szilard, Theodore von Kármán, Edward Teller, Dennis Gabor – were all his contemporaries and he seemed to know them personally.

Von Neumann’s first contributions to the academic world were in set theory, he published a paper on defining cardinal and ordinal numbers in 1921 which still stands today. This was at a time when maths was undergoing a foundational crisis, which Einstein described as "Froschmäusekreig" – a war of frogs and mice – a term I aim to use in future!

The set theory paper was written whilst he was still at school, he then moved on to study simultaneously a degree in Chemistry at Berlin, chemical engineering in Zurich at ETH and a doctorate in maths at Budapest – passing all with flying colours. He then moved on to Göttingen in about 1925 where Heisenberg was working. Von Neumann’s contribution was Mathematical Foundations of Quantum Mechanics published in 1932 – not translated into English for 20 years. His key contribution was demonstrating that Heisenberg’s matrix mechanics and Schrödinger’s wave equation theories of quantum mechanics were equivalent. To a degree I feel his contribution held back the field, backing as it did the Copenhagen interpretation of quantum mechanics (i.e. "shut up and calculate") – it wasn’t until the late 1950’s that other started probing the philosophical foundations of quantum mechanics in more depth.

It was during this period he was enticed to Princeton and the Institute for Advanced Studies. As German science declined under the Nazis due to their purges of "undesirables" from the civil service and universities, American science which had been in the doldrums rose – one at the cost of the other.

Von Neumann was clearly politically astute and had seen war coming in the early thirties, in the late thirties he was pro-actively trying to join the US army – fortunately redirected into the Manhattan Project (a project stuffed with scientists later to become Nobel Prize winners). His key contributions were in the simulations done for the implosion bomb (at a time when the idea of computer simulations was radical and new and not yet expressed). I hadn’t realised before was that airburst bomb are used because they are more destructive than the same explosives detonated at ground level, this is why the Trinity test was executed on a tower. Von Neumann was also on the committee that chose the targets for the atomic bombs dropped on Japan at the end of the war.

Von Neumann’s work on the Bomb, and his mathematical interests led him naturally into computing. Prior to the war, as part of the fundamentals of mathematics, Kurt Gödel, Alan Turing and Alonzo Church had done work essential to the foundation of computing. Turing’s work in particular demonstrated that theoretically a machine could be built which could carry out any computation but Gödel had shown that not all problems were computable. Von Neumann met with Alan Turing in 1942, it is not clear what they talked about I imagine both the Bomb and Turing’s codebreaking work at the Bletchley Park were topics of conversation.

Von Neumann had worked with computing devices on implosion calculations, an activity in which his second wife Klára Dán von Neumann was heavily involved. After the war a number of groups were working on computers, and he was convinced that the computer would be more revolutionary than the atomic bomb. His key contribution was a draft report on the EDVAC computer being built at the Moore School of Engineering in the University of Pennsylvania. The significance of this report was that it described clearly the architecture of a modern computer with input and output units, a central processor, memory and so forth – previously computers had largely been designed for very specific tasks and appear to have been logically complex. Von Neumann’s report was widely circulated much to the chagrin of his collaborators who had hoped for lucrative patents on the design of computers.

Stepping back in time a bit, Von Neumann had started working on what would come to be known as "game theory" in the 1920s, publishing his first paper in this area in 1926, followed by another in 1937 and finally a book written with Oskat Morgenstern, Theory of Games in 1943. After the Second World War mathematicians started to infiltrate economics departments and apply game theory ideas to economic problems. This has resulted in some very lucrative public auctions (designed using ideas stemming from game theory), and a fair number of Nobel Prizes in economics.

After the Second World War the US government set up the RAND Corporation which was a think tank, possibly the original think tank. They undertook a wide range of research, trying to maintain the spirit that drove the development of the atomic bomb, radar, codebreaking during the Second World War but also operations research. Von Neumann acted as a consultant and was seen very much as the father of the organisation without necessarily holding an exalted formal position. It was at this time, when they had the only nuclear weapons that the US contemplated a first strike against the Soviets. Von Neumann started quite hawkish but become more dovish over time.

The final chapter of the book is on cellular automata, stimulated by Alan Turing’s universal machine, and also how life works – in the post-war period the structure and mechanism by which DNA works was being elucidated and a number of physicists were interested in both the structure of DNA and how it transmits information. Cellular automata are perhaps best know by John Conway’s Life game. His work was prompted by Von Neumann, although Von Neumann’s book on cellular automata was not published until 10 years after his death in 1957 from bone cancer.

I must admit the book made me think of the nature of a biography, this one is quite heavily focused on scientific themes – Von Neumann is usually introduced at the beginning of the chapter with an outline of his contributions but then a wider cast of characters are brought in. The alternative is more focussed on the minutiae of the central characters life.

From a personal point of view we find Von Neumann is a bit of party animal, married twice with one daughter. His wives found him rather absorbed in his work. His occasionally harsh exterior harboured a more caring private side.

The Man from the Future is an enjoyable read if you have some interest in computing and physics, although deep knowledge of those areas is not required.

Book review: The Wood Age by Roland Ennos

My first book of 2023 is The Wood Age: How wood shaped the whole of human history by Roland Ennos, a history of wood and human society.

The book is divided into four parts “pre-human” history, up to the industrial era, the industrial era and “now and the future”.

Part one covers our ancestors’ life in the trees and descent from them. Ennos argues that nest building as practised by, for example, orangutans is a sophisticated and little recognised form of tool use and involves an understanding of the particular mechanical properties of wood. Descending from the trees, Ennos sees digging sticks and fire as important. Digging sticks are effective for rummaging roots out of the earth, which is handy if you moving away from the leaves and fruits of the canopy. Wood becomes harder with drying (hence making better digging sticks), and the benefits of cooking food with (wood-based) fire are well-reported. The start of controlled use of fire is unknown but could be as long ago as 2,000,000 years. The final step – hair loss in humans – Ennos attributes to the ability to build wooden shelters, this seems rather farfetched to me. I suspect this part of the book is most open to criticism since it covers a period well before writing, and with very little fossilised evidence of the key component.

The pre-human era featured some use of tools made from wood, and this continued into the “stone” age but on the whole wood is poorly preserved over even thousands of years. The oldest wooden tools discovered dates to 450,000 years ago – a spear found in Essex. The peak of tool making in the Neolithic is the bow and arrow – as measured by the number of steps required, and materials, required.

The next part of the book covers the period from the Neolithic through to the start of the Industrial Revolution. In this period ideas about farming spread to arboriculture, with the introduction of coppicing which produces high yields of fire wood, and wood for wicker which is a new way of crafting with wood. There is some detailed discussion on how wood burns, and how the introduction of charcoal, which burns hotter is essential to the success of the “metal” ages and progressing from earthenware pottery (porous and weak) to stoneware, which is basically glassy and requires a firing temperature of over 1000 celsius. As an aside, I found it jarring that Ennos quoted all temperatures in Fahrenheit!

This section has the air of describing a technology tree in a computer game. The ability to make metal tools, initially copper then bronze then iron then steel, opens up progressively better tools and more ways of working with wood, like sawing planks which can be used to make better boats than those constructed by hollowing out logs or splitting tree trunks. Interestingly the boats made by Romans were not surpassed in size until the 17th century.

Wheels turn out to be more complicated than I first thought, slicing a tree trunk into disks doesn’t work because the disks split in use (and in any case cutting cleanly across the grain of wood is hard without a steel-bladed saw). The first wheels, three planks cut into a circle and held together with battens, are not great. The peak of wheel building is the spoked wheel which requires steam bent circumference, turned spokes and a turned central hub with moderately sophisticated joints. Ennos argues that the reason South America never really took to wheels, and the Polynesians did not build plank built boats was a lack of metals appropriate for making tools.

Harder, steel tools also enabled the carpentry of seasoned timber – better for making furniture than greenwood which splits and deforms as it dries.

Ultimately the use of wood was not limited by the production of wood but rather by transport and skilled labour. The Industrial Revolution picks up when coal becomes the fuel of choice – making manufacturing easier, and allowing cities to grow larger.

The final substantive part of the book covers the Industrial Revolution up to the present. This is largely the story of the replacement of wood as fuel with coal, wood as charcoal (used in smelting) with coke (which is to coal what charcoal is to wood), and the replacement of many small wood items with metal, ceramic, glass and more recently plastic. It is not a uniform story though, England moved to coal as a fuel early in the 19th century – driven by an abundance of coal, a relative shortage of wood, and the growth of large cities. Other countries in Europe and the US moved more slowly. The US built its railways with wooden infrastructure (bridges and sleepers), rather than the stone used in Britain, for a much lower cost. The US still tends to build domestic buildings in wood. The introduction of machine made nails and screws in the late 18th century makes construction in wood a lower skilled activity. Paper based on wood was invented around 1870, making newspapers and books much cheaper.

In the 21st century wood and processed-wood like plywood or chipboard are still used for many applications.

The final part of the book is a short look into the future, mainly from the point of view of re-forestation. I found this a bit odd because it starts complaining about the “deforestation myth” but then goes on to outline when humans caused significant deforestation and soil erosion damage.!

Ennos sees wood as an under-reported factor in the evolution of humanity, but authors often feel their topic is under-reported. I suppose this is inevitable since these are people so passionate about their topic that they have devoted their energy to writing a whole book about it.

This is a nice read, not too taxing but interesting.

Book review: Dutch Light by Hugh Aldersey-Williams

dutch_lightIt’s taken me a while but my next review is of Dutch Light: Christian Huygens and the making of science in Europe by Hugh Aldersey-Williams.

I have read a biography of Christiaan Huygens – Huygens – the man behind the principle by C.D. Andriesse, this was a little over 10 years ago so it says something about my memory that I came to Aldersey-Williams book fairly fresh!

Huygens was born in 1629 and died in 1695, so after Galileo (1564 – 1642) and René Descartes (1596-1650) but before Isaac Newton (1642-1726).

Huygens came from a relatively prestigious family his father, Constantijn was an important diplomat as was his brother (also Constantijn, the Huygens reused forenames heavily!). The family had a broad view of education and his father and brothers were brought up to appreciate, and make, art, music, and drawing as well as learning more academic subjects. Christiaan’s scientific collaboration with his brother continued throughout his life – mainly focussed on lens grinding.

This practical turn had an impact on Huygen’s scientific work, he made the lenses and telescopes that he used to discover the rings of Saturn, and his discovery was sealed with the beautifully drafted illustrations of Saturn’s rings seen at varying orientations relative to earth. It had been known since Galileo’s time that there was something odd about Saturn but telescope technology was such that the rings were not clearly resolved, furthermore as earth changes position relative to Saturn we view the rings at different angles which changes their appearance which added to the confusion over their nature. Having hypothesised that the structures around Saturn were rings, Huygens was able to predict (successfully) when the rings would be oriented edge on to earth and hence disappear.

The Netherlands has given birth to more than its share of astronomers, Aldersey-Williams discusses whether this is a special feature of the landscape: big open skies with reflecting water, material resources – abundant high quality sand for glass/lens making or the culture – in particular the Dutch school of art from the period. He doesn’t come to a firm conclusion on this but gives the book its title.

Huygens work on telescopes and Saturn also led to his more theoretical work on a wave theory of optics and the “Huygens Principle”, something I learnt at school.

Aside from his practical work on astronomy, Huygens was a very capable mathematician – respected by Newton and Leibniz. His work pre-figured some of Newton’s later work, he led the way in describing nature, and observations, with mathematical equations. A was a transitional figure at the cusp of the Scientific Revolution, a pioneer of described observed phenomena using maths – diverging from Descartes who believed that nature could be explained by the power of pure thought.

Huygens also worked on clocks, largely in relation to the problem of the longitude, again this is an example of a combination of practical design skills and mathematical understanding. His main contributions in this area were modifications of pendulum clocks to be more accurate and the invention of a spring driven oscillator – more robust than pendulum driven clocks at sea. In the end his contributions were not sufficient to solve the problem of the longitude, and he also fell out with Hooke over the invention of the spring drive. He also had a dispute with Huret, the clockmaker who implemented his designs. But if you were working in science in the 17th century and didn’t fall out with Hooke, what sort of scientist were you?!

“…the making of science in Europe” in the title of this book refers to Huygens international activities. He was a founding member of the French Academie des Science, courted specifically by its prime mover – Jean-Baptiste Colbert, living in Paris for 16 years between 1666-1672. Colbert’s successor was not as favourable disposed towards Huygens, and when Colbert died in 1683 he left the Academie. Huygens also met and corresponded with scientists in London, at the Royal Society and elsewhere, and across the rest of Europe. This was a time when discoveries, and experimental techniques were being shared more often, if not universally.

Andriesse and Aldersey-Williams both ask why Huygens is not more famous when compared particularly to Newton. I’ve thought about this a bit since reading Andriesse’s book and come to the tentative conclusion that figures like Galileo, Newton, Einstein and Hawking are not famous scientists. They are famous, and they happen to be scientists, they are symbols for a period not necessarily rooted in scientific achievement. Newton was promoted very heavily after his death by the English, and prior to his death he was not only a scientist but also Warden of the Royal Mint, and briefly an MP.

I enjoyed this book more than the Andriesse biography, in both cases it felt that there was perhaps a scarcity of material for Huygens life which led to a great deal of discussion around Huygens father, to the extent that in the early pages it wasn’t clear whether references to Huygens were to Christiaan or his father Constantijn.