May 2019 archive

Book review: Matthew Boulton: Selling What All the World Desires by Shena Mason

matthew_boultonMatthew Boulton: Selling what all the World Desires by Shena Mason is a rather sumptuous book featuring a collection of articles and a catalogue of objects relating to Matthew Boulton, organised by Birmingham City Council on the bicentenary of his death in 2009.

Boulton was famous for his Soho Manufactory built a couple of miles from the centre of modern Birmingham. There he started making “toys”, following in the footsteps of his father. At the time “toys” were small metal objects such as buttons, buckles, watch chains and the like for which Birmingham was famous. Over time he brought a high degree of mechanisation and productionisation to the process.

But “toys” were only the start of his business interests, he soon moved into making higher value objects such as vases, candle holders and tableware made from silver, Sheffield plate (silver plated tin) and ormolu (gold gilded bronze or brass), aiming to supply a growing middle class clientele by producing objects at scale with a high degree of mechanisation to reduce cost. For this he cultivated connections in well-to-do society, and employed the best designers.

I was interested to read the article on Picturing Soho by Val Loggie which talks about how the architected design of the factory was essentially part of Boulton’s marketing strategy. The Soho site drew many visitors, it was a feature of the late Enlightenment that facilities such as these attracted visitors from across Europe and America. Boulton even installed tea rooms and a show room to furnish their needs. Although a continuing concern was the risk of industrial espionage which led ultimately to the curtailment of such visits in the early years of the 19th century.

As part of his silver work he campaigned for Birmingham to have its own Assay Office to hallmark silver goods. Previously silver items needed to go to Chester to be assayed and receive a hallmark which was a lengthy journey, costing money and risking damage to items. Gaining an assay office required an act of parliament for which Boulton lobbied in the face of opposition from London silver and goldsmiths. The London case was damaged when a “secret shopper” investigation showed that most silverware passing through the London assay office was below standard, and furthermore they were caught trying to bribe Boulton’s former employees to speak against him. An assay office was granted to Sheffield in the same act.

Boulton also built a mint at Soho, pretty much fully mechanising the process of producing coinage, trade tokens and decorative medals. This work seems to have been one of his more profitable enterprises. Towards the end of the 18th century the government had not minted new copper coinage for quite some time which caused problems because it was often pennies and tuppences that workers needed to buy essentials. Ultimately Boulton was given the contract to mint a large quantity of copper coinage, and was selling minting machinery around the world.

Finally, there was his work on steam engines with James Watt. Watt invented an improvement to the Newcomen steam engine in use at the time which made it much more efficient, in terms of the amount of coal required to produce the same power. Watt also developed engines that produced reliable rotary motion, essentially for driving factory machinery rather than just pumping water out of mines. In the first instance Watt and Boulton acted as consultants, designing engines for specific customers and buying in parts from various suppliers to construct them. They charged a fraction of the cost saving from reduced coal use, which sounds like it was rather difficult to administer. The engine business, they maintained their income by lobbying parliament to extend their patent. Later they built a foundry at Soho which made all of the parts of the engine.

Actually, there was one more thing, Watt and Boulton produced a system for mechanical reproduction of letters and paintings.

Boulton’s businesses were continued after his death by his son, and the son of the James Watt. The silver plate company and foundry lasted longest but by the end of the 19th century they were gone. The Soho Manufactory made it to the dawn of photography but was demolished in 1863. Boulton’s Soho House remains on the site but the rest of the works, and parkland in which they sat have been overtaken by housing. 

In some ways he was the metalworking equivalent of Josiah Wedgewood with whom he was well-acquainted through there membership of The Lunar Society, you can read more about them in Jenny Uglow’s The Lunar Men. He was also interested in the science of the time.

Many of Boulton’s ventures seem to have been of limited commercial value, they often required significant investment which he raised via loans, and revenue typically fell below expectations.

This is a beautiful book, the articles cover the key parts of Boulton’s work at Soho but it is not a biography. The catalogue, which makes up half the book is worth reading too – the photographs are gorgeous and there are descriptive text boxes which explain the wider context of the objects.

Book review: Lost in Math by Sabine Hossenfelder

lost_in_mathIt is physics for my next read, although my background is in physics and chemistry I don’t read much physics. Lost in Math by Sabine Hossenfelder is a journey through modern fundamental physics and how it has lost its way over the last few years in a quest for beauty rather than relevance.

My background is actually in a different part of physics, the physics of squishy things like plastics, proteins and plants. I stopped being an academic physicist nearly twenty years ago but even at that time there was a definite feeling that some area of physics felt themselves superior to others. Experimental soft matter physicists, like myself, were at the bottom of the pile.

This background does mean that I’ve talked to actually string theorists about string theory, and been intrigued that when you asked them where the extra (20 or so) dimensions the theory requires were the fall back answer was always “curled up very small” – they were unable to express it differently. 

The problem in fundamental physics is that theory is running well ahead of what can be experimentally confirmed. The Higgs boson found at CERN in 2012 was predicted in the early sixties, some 50 years previously. Gravitational waves, first observed in 2016, were predicted by Einstein 100 years previously. Theories today are generating hypotheses which may never be experimentally accessible, on current technology they require accelerators the size of galaxies and and Jupiter sized detectors.

With theory running so far ahead of experiment, how does one decide whether a theory is correct, an accurate model of the universe? The answer of choice for a number of years has been beauty, and naturalness. Distinctly unphysical concepts. Defining beauty is a difficult business, in physics as well as elsewhere. For physicists it means beautiful maths. I wonder whether there is a a link with music here, the Westerners have trained their ears to find particular note combinations harmonious or beautiful but in other traditions different combinations are considered beautiful. Naturalness is a related idea, which has a technical meaning, naturalness abhors taking one very large number from another very large number to leave a number of just the right size. What are the chances of that happening?

Hossenfelder embarks on a world tour to address these issues, talking to scientists across the US and Europe. The style of her writing is journalistic and confessional. This is refreshing to see in a book about physics.

An interesting point raised is that the point of a Kuhnian revolution is as much that our perception of beauty shifts when there is a paradigm shift, as anything else.

The pain for particle physicists is that there is this zoo of 25 particles from which all the matter we can see is constructed but they seem so arbitrary, there is no rhyme or reason to their masses or deep reason for their number. Really, particle physicists want an equation from which these features simply appear rather than find themselves in the position of having to set the values of masses and so forth. This is why physicists are physicists and not biologists or chemists. Chemists revel in mess, biologists are even worse.

The hope was that the LHC at CERN would reveal new particles after the Higgs boson, which would confirm that there was something beyond the Standard Model, this would provide some meat for them to gnaw at and the prospect of planning the next big facility to find out more. But so far there has been nothing, leaving particle physics at a loss.

Cosmology is suffering from a similar problem, although the problem in cosmology is linking up general relativity which explains black holes and the like with quantum mechanics. No one really knows what quantum mechanics means, just that it allows you to explain the values measured in certain experiments really well for reasons best not inspected too closely.

It is sometimes thought that scientists collect loads of data and then come up with a theory that explains it all, this hasn’t been the case in physics for a long time. For the best part of the last 400 years physics has been about coming up with plausible theories and checking to see if they are correct.

Hossenfelder finishes with some thoughts on other types of cognitive and social bias, and even provides an appendix of remedies to address them.

Lost in Math has the air of a disenchanted author making a final tour of the topic she loves before leaving for a job in industry, so it is heartening to find Hossenfelder still in fundamental physics. It seems to me that this level of introspection and the personal touch is something that is needed in academic research.

Fortunately for British readers the phrase “lost in math” is scarcely used in the text.