Lavoisier: Chemist, Biologist, Economist by Jean-Pierre Poirier

Lavoisier

Recently I read Vivian Grey’s biography of Lavoisier. Although a fine book, it left me wanting more Lavoisier, so I turned to Jean-Pierre Poirier’s more substantial biography: “Lavoisier: Chemist, Biologist, Economist”. Related is my blog post on the French Académie des Sciences, of which Lavoisier was a long term member, and senior, member.

This is a much longer, denser book than that of Grey, with commonality of subject it’s unsurprising that the areas covered are similar. However, Poirier spends relatively more time discussing Lavoisier’s activities as a senior civil servant and as an economist.

The striking thing is the collection of roles that Lavoisier had: senior member of Ferme Générale (commissioned Paris wall), director of the Académie, director of the Gunpowder and Saltpeter Administration, owner and manager of his own (agricultural) farms. It’s difficult to imagine a modern equivalent, the governor of the Bank of England running a research lab? Or perhaps an MP with a minor ministerial post, running a business and a research lab? In practical terms he did experimental work for a few hours each morning and evening (6-9am, 7-10pm) and on Saturdays – having a number of assistants working with him.

Lavoisier was wealthy, inheriting $1.8million* from relatives as an 11 year old he joined the Ferme Générale with an initial downpayment of about $3million. However, this provided an income of something like $2.4-4.8 million a year. On a trip to Strasbourg as a 24 year old, he spent $20,000 on books – which you have to respect. As the collector of taxes levied on the majority but not the nobility or clergy, the Ferme Générale was one of the institutions in the firing line when the Revolution came. Wealthy financiers, such as Lavoisier, bought stakes in these private companies, provided exclusive rights by the King, and made enormous rates of return (15-20%), at the same time serving the Kings needs rather poorly.

As for his activities in chemistry, Poirier provides a a good background to the developments going on at the time. Beyond what I have read before, it’s clear that Lavoisier does not make any of the first discoveries of for example, oxygen, carbon dioxide or nitrogen, nor of the understanding that combustion results in weight gain. But what he does do is build a coherent theory that brings all of these things together and overthrows the phlogiston theory of combustion. With Guyton de Morveau he develops a new, systematic, way of naming chemicals which is still used today and, as a side effect, embeds his ideas about combustion. It’s from this work that the first list of elements is produced. Furthermore, Lavoisier sees the applications of the idea of oxidation in explaining “chemical combustion” as entirely appropriate for understanding “biological combustion” or respiration. In a sense he sets the scheme for biochemistry which does not come to life for nearly 100 years, for want of better experimental methodology.

It’s interesting that gases are arguably the most difficult materials to work with yet it is their study, in particular understanding the components of air, which leads to an understanding of elements, and the “new chemistry”. Perhaps this is because gases are their own abstraction, there is nothing to see only things to measure.

The book also gives a useful insight into the French Revolution for someone who would not read the history for its own sake. The heart of the Revolution was a taxation system that exempted the nobility and the clergy from paying anything, and a large state debt from supporting the American War of Independence. Spending appears to have been decided by the nobility, or even just the King, with little regard as to how the money was raised. At one point Paris considered an aqueduct to bring in fresh water to all its citizens, but then decided that rebuilding the opera house was more important! The Revolution was a rather more drawn out than I appreciated with Lavoisier at the heart of the ongoing transformation at the time of his execution during the Terror, only to be lauded once again a couple of years later as Robbespierre fell from power and was executed in his turn.

On economics: Lavoisier was one of the directors of the French Discount Bank, during the Revolution he was involved in plans for a constitutional monarchy and amongst the ideas he brought forward was for what would essentially be an “Office for National Statistics”. The aim being to collect data on production and so forth across the economy in support of economic policy. This fits in with the mineral survey work he carried at the very beginning of his career and also on his work in “experimental farming”. Economic policy at the time alternating between protectionism (no wheat exports) and free-markets (wheat exports allowed), with many arguing that agriculture was the only economically productive activity.

It’s tempting to see Lavoisier’s scientific and economic programmes being linked via the idea of accounting: in chemistry the counting of amounts of material into and out of a reaction and in economics counting the cash into and out of the economy.

Definitely a book I would recommend! It’s remarkable just how busy Lavoisier was in a range of areas, and the book also provides a handy insight into the French Revolution for those more interested in science. I wondering whether Benjamin Franklin should be my next target.

Footnote

*These are equivalences to 1996 dollars, provided in the book, they should be treated with caution.

The naming of things

This post is a response to one of the points Rebekah Higgit makes over at “Whewell’s Ghost” on “Dos and Don’ts of history of science”. It’s all about scientists:

1) Do not ever call anyone a scientist who would not have recognised the term. The word was not coined until the 1830s (by William Whewell himself) but a) he meant something rather different by it and b) the word was not actually used until the 1870s. If we use the term to describe anyone before this date we risk loading their views, status, career, ambitions and work with associations that just do not exist before this date.I may know what I mean if it slips out in my description of an 18th-century astronomy, but the person listening to me will hear all sorts of other things. It too easily glides over points such as the fact that individuals probably did something else to make their living, or were personally wealthy. Science was not a career, or a vocation. I could give many further examples, and expand this rule into to using actors’ categories elsewhere, but this is the fundamental point. Not only did the word not, essentially, exist pre-1870 but there was no equivalent and no such idea. Awkward as it can sometimes be, man of science, natural philosopher, mathematician, astronomer, physician, naturalist or whatever should always be used instead.

I disagree with this. I should point out that I don’t consider this a Marmite* argument: the point Rebekah makes is not unreasonable and arguing serves to reinforce the point she is making. That the lives of “scientists” in the past were very different from the lives of most modern “scientists” is an entirely fair point, and is perhaps what the history of science is all about.

Since Rebekah is a professional historian of science, I feel my best approach is to argue this point on linguistic and scientific grounds, since I am a scientist not a historian. The OED says a scientist is:

  1. A person with expert knowledge of a science; a person using scientific methods.

it goes on to describe its coining via almost joking discussions over the British Association for the Advancement of Science in 1834 to Whewell’s use in 1840.

Precluding the use of the word “scientist” from application to people living before it was introduced seems to rather limit our options – how far must this sanitisation of language extend? Our use of words evolves in time. There are parallels here with Maxwell’s equations: in the mathematical language of his time his equations were clumsy and verbose, in more modern notation they are much more compact (and to overuse a word “elegant”). Working scientists don’t use Maxwell’s original notation, they use the modern notation because it captures the essential elements of the original work but is easier to use.

In my view the heart of the issue is the way in which we define scientists, to me being a scientist is defined operationally: by what I do in applying the scientific method, and by inference what people did in the past. Rather than socially or economically: what I have been trained to do or what people would pay me to do. I would still be a scientist if I were not paid for it, and hadn’t been trained. In both cases I might be poorer, but in different senses of the word!

There is also a point about communication here too: using a word for which you and your colleagues hold a specialist, narrow meaning may be “correct” but not help with communication. Knowing that your definition and the definition your audience hold is different is important but does not mean you should hold your definition sacrosanct – I face the same issue communicating my specialist area of science.

Perhaps the issue here is that Rebekah takes scientist to mean “modern professional scientist” whilst my definition is more catholic.

This does lead to the question: should I describe myself as a historian?

*Appropriate here since I work for the company that makes Marmite.

L’Académie des Sciences

ColbertPresents

I’ve written a number of times on the Royal Society, Britain’s leading and oldest learned society, often via the medium of book reviews but also through a bit of data wrangling. This post concerns the Académie des Sciences, the French equivalent of the Royal Society. It has gone through several evolutions, and is has been one of five academies inside the Institut de France since its founding in 1795. As a physical scientist the names of many members of the Académie are familiar to me; names such as Coulomb, Lagrange, Laplace, Lavoisier, Fourier, Fresnel, Poisson, Biot, Cassini, Carnot …

The reason I’m interested in scientific societies is that, as a practitioner, I know they are part of the way science works – they are the conduit by which scientists* interact within a country and how they interact between countries. They are a guide to who’s hot and who’s not in science at a particular moment in time, with provisos for the politics of the time. As I have remarked before much of the “history” taught to scientists comes in the form of Decorative Anecdotes of Famous Scientists, this is my attempt to go beyond that narrow view.

The Académie des Sciences was founded in France in 1666 only a few years after the Royal Society which formally started in 1660. It appears to have grown from the group of correspondents and visitors to Marin Mersenne. In contrast to the Royal Society it was set up as a branch of government, directed by Jean-Baptiste Colbert who had proposed the idea to Louis XIV. The early Academy ran without any statutes until 1699 when it gained the Royal label. The Academy was based on two broad divisions of what were then described as mathematical sciences (astronomy, mathematics and physics) and “physical” sciences (anatomy, botany, zoology and chemistry) within these divisions were elected a number of academicians, and others of different grades. Numbers were strictly limited: in 1699 there were 70 members and even now there are only 236. Unlike the Royal Society, funded by member subscriptions, the Academy was funded by government – giving a number of generous pensions to senior academicians to conduct their scientific work.

The Academy avoided discussion of politics and religion, echoing the founding principles of the Royal Society, and was explicit in making links to foreign academics giving them the formal status of correspondent. This political neutrality was sustained through the French Revolution: although the Academy was dissolved for a few years at the height of the Terror and was subsequently reformed with essentially the same membership as before the revolution. Furthermore work on revising the French system of weights and measures carried on through the Revolution.

The Scholarly Societies Project has an overview of publications by- and about the Academy. The earliest scientific papers of the Academy appear in “Journal des Sçavans”, which commenced publication in 1665, shortly before the “Philosophical Transactions of the Royal Society” and therefore the earliest scientific journal published in Europe. From 1699 a sequence of work is published in “Histoire de l’Académie royale des sciences” until 1797.  Finally “Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences” has been published since 1835. Most of which are freely available as full-text digitized editions at Gallica (the French National Library).

The British government established the Longitude Prize in 1714, by act of parliament, to award the inventor of a simple and practical method for determining the longitude at sea. Subsequently Rouillé de Meslay invested a similar prize for the Academy, which commenced in 1720. This sequence of Academy prizes was awarded yearly to answer particular questions and alternated between subjects in the physical sciences and subjects in navigation and commerce. Those in commerce and navigation revolved around shipping: with questions on anchors, masts, marine currents and so forth. These prizes were open to all, not just members of the Academy. Subsequently the Academy became a clearing house for a whole range of prizes, these are described in more detail in “Les fondations de prix à l’Académie des sciences : 1714-1880” by E. Maindron.

In summary, although similar in their principles of supporting science, scientific communication and providing scientific support to the state and commerce the Royal Society and the Académie des Sciences differ in their internal structure and relationship with the state. The Academy being more closely aligned and funded by the state, certainly in formal terms, and rather more limited in its membership.

In common with the Royal Society the membership records of the Académie are available to play with and in common with the Royal Society they are in the form of PDF files which are a real pain to convert back into nicely structured data. I could engage in a lengthy rant on the inequities of locking up nice data in a nasty read-only format but I won’t!

Footnotes

  • Image is “Colbert présente à Louis XIV les membres de l’Académie Royale des Sciences crée en 1667” by Testelin Henri (1616-1695)
  • *Yes, Becky, I know you don’t want me to use “scientist” in reference to people living before the term was first coined in the 19th century ;-)

References

MacTutor History of Mathematics Archive is the best English language resource I’ve found on the Académie des Sciences. Winners of the Grand Prix can also be found on this site.

The elephant in the room

comparison

In my last blog post I wrote about the AV referendum and party political self-interest. Before that I wrote about AV, preference and how parties hold their internal elections.

In this post I will just explain the chart at the top of the page.

It shows the number of parliamentary seats each of the three main national parties gained in the UK 2010 General Election under first-past-the-post (FPTP) – these are the blue bars. The red bars show the number of seats each party would expect to gain under Alternative Vote (AV), based on a mock election involving 13,000 people. Finally the yellow bars show the number of seats which would be obtained under a proportional system.

The proportional system, where the number of seats is proportional to the number of votes gained nationwide, is what I would call “fair”.

Labour and Tory parties both benefit significantly under the current FPTP system and proposed AV systems.

Self-interest and electoral perversions

In this post I will argue that all of the political parties are arguing the case for AV in their own self-interest, this is very obviously what they are doing and admitting such will make a change.

I’d like to start with the electoral system as it stands today:

Two things are going on at an a general election: there are “local” elections in 650 constituencies which determine which individual represents each constituency in parliament and then there is the government formed as the result of this set of elections. Once elected to parliament MP’s represent their constituents interests but vote largely as whipped by their political party.

First past the post (FPTP) and Alternative Vote (AV) are both algorithms for determining local representation: they make no deliberate effort to make the output of a collection of constituencies proportional to the proportion of votes cast for a particular party across the country. The degree to which they give proportionality is dependent on the spatial distribution of voters for each party across the country and the locations in which electoral boundaries are drawn1. The current distribution of party support is not far off the point where it can give completely perverse results with the Liberal Democrats gaining the largest fraction of the popular vote and the fewest parliamentary seats and Labour gaining the smallest fraction of the popular vote and the largest number of parliamentary seats2.

The FPTP system acts to supress the formation of more than two political parties, this is known as Duverger’s law. You can see this in action in the UK, with the separation of the SDP from Labour in the early 1980’s, gaining a large fraction of the popular vote: approaching that of Labour, but nothing like the same number of seats3.

Best estimates for AV in a UK general election are that the Liberal Democrats will gain seats in a Westminster election and Labour and the Tories will lose some, it isn’t particularly clear who will lose most.

So moving on to the self-interest of parties:

The Liberal Democrats are in favour of AV because they will get more seats, this is OK because they will still have far fewer seats than their proportion of the vote should allow.

The Tories are against AV because they believe that they will lose seats to the Liberal Democrats for the same share of the vote, and that Labour-Liberal Democrat coalitions are more likely than Tory-Liberal Democrat coalitions. Wait! What?

Labour is split on AV, this is because some believe that Labour-Liberal Democrat coalitions are more likely than Tory-Liberal Democrat coalitions, and the Tories could be basically locked out of power for ever. Others in Labour, on the left of the party, believe that the Socialist utopia should be pure and that coalition is anathema and so oppose AV.

UKIP is in favour of AV because they believe that they will be first preference for a number of people who vote Tory tactically and second preference for a number of Tories. Their visibility will rise, even if it doesn’t lead to much increase in seats.

The Greens are in favour of AV because they believe they will pick up second preferences from Liberal Democrats and Labour.Their visibility will rise, even if it doesn’t lead to increased seats.

The BNP is against AV because it judges that it will not pick up second preferences from anyone. It decreases the likelihood of them gaining seats even if it increases the visibility of the party. The BNP is entirely visible already but for the wrong reasons.

Oddly those on either side of the debate are able to draw on arguments that match the self-interest of their parties. What is the non-aligned voter to make of this?

Footnotes

  1. Oxford is a nice example of this: across the two Oxford parliamentary seats (Oxford East and Oxford West and Abdingon) the number of votes for the three main parties are (LibDem: 41087, Tory: 33633, Lab: 27937. The two constituencies return a Labour and a Tory MP.
  2. Don’t believe me? Put Tory: 33.2%, Labour: 27.2%, LibDem: 27.7% Other: 11.9% into this BBC seat calculator. The actual result was Tory: 36.1%, Labour: 29.0%, LibDem: 23.0% Other: 11.9%
  3. The 1983 General Election. Vote share: Tory: 42.4% Labour: 27.6% SDP+Liberal Alliance: 25.4% Number of seats: Tory: 397 Labour: 209 SDP+Liberal Alliance: 23.
  4. Given 1-3, on what basis is it that we claim to live in a democracy?