Book review: The Man from the Future by Ananyo Bhattacharya

von_neumannThe Man from The Future by Ananyo Bhattacharya has been sitting on my bedside table in the "to be read" pile for a little while. I was aware of Von Neumann largely through his work on computers, and game theory.

The book is organised thematically, firstly on Von Neumann’s early years then on the various fields in which he made contributions.

Neumann János Lajos was born in Budapest in 1903, the Hungary style was to put the family name first – his father was ennobled in 1903 – hence the "von" and he Anglicised his forename to John when he moved to America in 1930. Hungary, and Budapest, in Von Neumann’s time was a hot bed of intellectuals many of whom fled Europe to America with the rise of the Nazis. For someone with a background in physics it is a bit of a Who’s Who – Eugene Wigner, Leo Szilard, Theodore von Kármán, Edward Teller, Dennis Gabor – were all his contemporaries and he seemed to know them personally.

Von Neumann’s first contributions to the academic world were in set theory, he published a paper on defining cardinal and ordinal numbers in 1921 which still stands today. This was at a time when maths was undergoing a foundational crisis, which Einstein described as "Froschmäusekreig" – a war of frogs and mice – a term I aim to use in future!

The set theory paper was written whilst he was still at school, he then moved on to study simultaneously a degree in Chemistry at Berlin, chemical engineering in Zurich at ETH and a doctorate in maths at Budapest – passing all with flying colours. He then moved on to Göttingen in about 1925 where Heisenberg was working. Von Neumann’s contribution was Mathematical Foundations of Quantum Mechanics published in 1932 – not translated into English for 20 years. His key contribution was demonstrating that Heisenberg’s matrix mechanics and Schrödinger’s wave equation theories of quantum mechanics were equivalent. To a degree I feel his contribution held back the field, backing as it did the Copenhagen interpretation of quantum mechanics (i.e. "shut up and calculate") – it wasn’t until the late 1950’s that other started probing the philosophical foundations of quantum mechanics in more depth.

It was during this period he was enticed to Princeton and the Institute for Advanced Studies. As German science declined under the Nazis due to their purges of "undesirables" from the civil service and universities, American science which had been in the doldrums rose – one at the cost of the other.

Von Neumann was clearly politically astute and had seen war coming in the early thirties, in the late thirties he was pro-actively trying to join the US army – fortunately redirected into the Manhattan Project (a project stuffed with scientists later to become Nobel Prize winners). His key contributions were in the simulations done for the implosion bomb (at a time when the idea of computer simulations was radical and new and not yet expressed). I hadn’t realised before was that airburst bomb are used because they are more destructive than the same explosives detonated at ground level, this is why the Trinity test was executed on a tower. Von Neumann was also on the committee that chose the targets for the atomic bombs dropped on Japan at the end of the war.

Von Neumann’s work on the Bomb, and his mathematical interests led him naturally into computing. Prior to the war, as part of the fundamentals of mathematics, Kurt Gödel, Alan Turing and Alonzo Church had done work essential to the foundation of computing. Turing’s work in particular demonstrated that theoretically a machine could be built which could carry out any computation but Gödel had shown that not all problems were computable. Von Neumann met with Alan Turing in 1942, it is not clear what they talked about I imagine both the Bomb and Turing’s codebreaking work at the Bletchley Park were topics of conversation.

Von Neumann had worked with computing devices on implosion calculations, an activity in which his second wife Klára Dán von Neumann was heavily involved. After the war a number of groups were working on computers, and he was convinced that the computer would be more revolutionary than the atomic bomb. His key contribution was a draft report on the EDVAC computer being built at the Moore School of Engineering in the University of Pennsylvania. The significance of this report was that it described clearly the architecture of a modern computer with input and output units, a central processor, memory and so forth – previously computers had largely been designed for very specific tasks and appear to have been logically complex. Von Neumann’s report was widely circulated much to the chagrin of his collaborators who had hoped for lucrative patents on the design of computers.

Stepping back in time a bit, Von Neumann had started working on what would come to be known as "game theory" in the 1920s, publishing his first paper in this area in 1926, followed by another in 1937 and finally a book written with Oskat Morgenstern, Theory of Games in 1943. After the Second World War mathematicians started to infiltrate economics departments and apply game theory ideas to economic problems. This has resulted in some very lucrative public auctions (designed using ideas stemming from game theory), and a fair number of Nobel Prizes in economics.

After the Second World War the US government set up the RAND Corporation which was a think tank, possibly the original think tank. They undertook a wide range of research, trying to maintain the spirit that drove the development of the atomic bomb, radar, codebreaking during the Second World War but also operations research. Von Neumann acted as a consultant and was seen very much as the father of the organisation without necessarily holding an exalted formal position. It was at this time, when they had the only nuclear weapons that the US contemplated a first strike against the Soviets. Von Neumann started quite hawkish but become more dovish over time.

The final chapter of the book is on cellular automata, stimulated by Alan Turing’s universal machine, and also how life works – in the post-war period the structure and mechanism by which DNA works was being elucidated and a number of physicists were interested in both the structure of DNA and how it transmits information. Cellular automata are perhaps best know by John Conway’s Life game. His work was prompted by Von Neumann, although Von Neumann’s book on cellular automata was not published until 10 years after his death in 1957 from bone cancer.

I must admit the book made me think of the nature of a biography, this one is quite heavily focused on scientific themes – Von Neumann is usually introduced at the beginning of the chapter with an outline of his contributions but then a wider cast of characters are brought in. The alternative is more focussed on the minutiae of the central characters life.

From a personal point of view we find Von Neumann is a bit of party animal, married twice with one daughter. His wives found him rather absorbed in his work. His occasionally harsh exterior harboured a more caring private side.

The Man from the Future is an enjoyable read if you have some interest in computing and physics, although deep knowledge of those areas is not required.

Book review: On Savage Shores by Caroline Dodds Pennock

on_savage_shores.Another book from those I follow on Twitter, On Savage Shores by Caroline Dodds Pennock which is about the Indigenous people who came to Europe in the early years of the invasion of the Americas.

The book is divided thematically into six chapters titled Slavery, Go-betweens (covering translators), Kith and Kin (the transport of families, and the adoption of Indigenous people – mainly boys – by Spanish men), the Stuff of Life (about products such as potatoes, tomatoes, tobacco and so forth), Diplomacy, and Spectacle and Curiosity (about Indigenous people as entertainment).

The focus is on Meso- and South America and the 16th century, when most of the interactions were with Spain and Portugal. There is some mention of colonisation of North America which was more related to Britain, and Brazil which was an interest to the French.

I think the thing that struck me most was the number of Indigenous people in Europe, particularly in Spain, from the very start of the 16th century. I had been aware from reading the history of various scientific expeditions that one or two Indigenous people were often brought back to show off in court. But On Savage Shores highlights that in fact thousands of people were brought, often crossing the Atlantic several times over a period of years. Many were brought explicitly as slaves but others came as diplomats, translators, companions although it is unclear in many cases how voluntary their travel was.

The second aspect which struck me was how active, and engaged in the Spanish legal systems and the Royal courts the Indigenous visitors often were, this was in part because Indigenous people were familiar with legal processes in their own countries. Furthermore courts both legal and Royal are an excellent source of primary documents, it is one of very few ways the Indigenous people were documented. Documents generated by Indigenous people are rather more sparse – there are a handful of pre-invasion codices, some spoken poetry captured in writing at a later date and legal-like documents created to support land claims and the like in Spanish courts. Many of the European records are of those seeking emancipation, quite often successfully. 

Columbus very clearly went to the New World with a view to capturing slaves – he had visited the Portuguese slaving fortress, Castle of Sao Jorge da Mina in Ghana prior to his visit and was evaluating the Indigenous people and their suitability for slavery from his first visits to the Americas. To the end of the 16th century something between 1 and 2 million Indigenous people were taken as slaves with most remaining in the Americas but some being brought back to Spain. In the same period about 300,000 Africans were enslaved and taken to the Americas. In theory Spain banned slavery in the mid-16th century, however it wrote itself a number of exceptions which meant the practice was to effectively continue in large volumes for many years.

As well as slaves the Europeans took people they saw as suitable as translators, they also took the children of important Indigenous leaders and some that acted as diplomats – taking their cases to the Spanish Court. For these people the level of coercion is difficult to ascertain. There were certainly a number who came to Europe voluntarily but others had little choice.

A recurring theme is the adoption of sons into the families of, for example Walter Raleigh, Christopher Columbus, and Hernando Cortés. This practice seems to have some basis in Indigenous practices and the adopted sons often gained relatively high social positions back in Europe. Similarly there is a Brazilian boy, Essomericq taken at age 15 by the French in 1504 who became a pillar of the community in France before dying at the age of 90 – although his story is somewhat in question having been recorded sometime after he died by a descendant with a point to prove.

There was a huge population collapse across the Americas due to European diseases in the fifty years after Columbus landed, the diseases travelled faster than the European invaders. The movements of Indigenous people need to be seen in this context, first of all the trans-Atlantic passage was a long grim voyage for all – taking in excess of 6 weeks in the 16th century. Added to this Indigenous people were vulnerable to European diseases, and frequently died in transit or within a few weeks of arriving in Europe. All Europe got in exchange was syphilis. Some of the Indigenous people travelling to Europe were looking for advantage from Spanish support back in their home countries which were in turmoil.

On Savage Shores was revelatory for me, it changed the way I thought about Indigenous people and, to a smaller degree, the Spanish invaders. The switch in viewpoint makes Indigenous people, just that – people – rather than exhibits. On Savage Shores is also an enjoyable read, the focus on one period and one region probably keeps it to a manageable length down a bit. It feels like there is scope for a second book focussed on North America.

Book review: Richard Trevithick – Giant of Steam by Anthony Burton

A second hand book to review this time, Richard Trevithick – Giant of Steam by Anthony Burton. I bought it in Malvern. Richard Trevithick is best know as the inventor of the steam railway locomotive – the first person to put a steam engine on a carriage with wheels and put that carriage on metal rails. This followed his demonstration of a steam road carriage in 1801, with the railway locomotives in the following couple of years.

Richard Trevithick was born near Camborne in Cornwall to Ann Teague (a miners daughter) and Richard Trevithick Senior, a mine “captain”, in 1771. He died in 1833. He had a wife, Jane who would be well-described as “long-suffering” – Trevithick had little interest in providing a steady income for his family or at least if he had the desire he was inept at executing it and was briefly bankrupt in 1815. Furthermore he left for South America for a period of 11 years from 1816 to 1827, with little communication back home with his wife and friends in England during that period. Despite this his six children, and his wife, seemed to have held him in at least some regard and his son Francis, at the very least in high regard. Jane Trevithick lived until 1868.

The Cornish mining milieu is a key feature of his upbringing and subsequent career. The mine “captains” were very hands-on managers who led mining operations at the Cornish mines. They often had significant financial interest in mines. Cornwall in the 18th century was seen as a bit of an English Wild West with a degree of opposition to ideas developed outside the area. Steam engines had been born in the South West to drain mines, with the first made by Thomas Savery in 1698, followed by Thomas Newcomen’s more practicable engine invented in 1712. Both Savery and Newcomen were from the neighbouring county of Devon.

The James Watt / Matthew Boulton steam engine was to dominate the market for steam engines in the United Kingdom from 1775 until the end of the 18th century. It was a more efficient engine than those that went before, commercially it was protected aggressively by Watt and Boulton using patents which supressed other developments in the area until they expired.

Trevithick had a fairly minimal education but seemed to be a very adept calculator, he was a large, strong man with something of a temper. This caused him problems later in life with some of his inventions which essentially failed because he fell out massively with his backers/potential customers and stopped work on them. He had a life-long friendship with Davies Gilbert who was more scientifically inclined. Trevithick quickly moved to working in the local mines first as a helper to his father but then in his own right. It’s interesting that steam engines would have been a regular part of the Cornish mining industry for seventy or so years before Trevithick entered the scene. Developments were clearly relatively slow until the arrival of the Watt/Boulton engine. The key scientific development in the area, the discovery of latent heat – the energy required to bring water from the liquid to gaseous state – was only published in 1763 by Joseph Black.

On railway locomotives it turned out Trevithick was a little before his time, George Stephenson was to successfully kick off the railway revolution with the Stockton and Darlington Railway in 1825 and the Liverpool and Manchester line in 1829 – twenty or so years after Trevithick’s demonstration. Trevithick’s effort suffered from two issues, one systematic issue was Trevithick’s approach which was to demonstrate many ideas but never to follow them through to successful, commercial exploitation. The second, technical, issue was that iron rails at the time were not tough enough to handle the weight of a steam engine and soon fractured. Interestingly Robert Stephenson, George’s son and a significant railway engineer in his own right, met Trevithick in Columbia in 1826.

Trevithick’s real innovation was in developing a high pressure steam engine, operating at pressures ultimately in excess of 150 psi compared the Watt-Boulton engine operating at less than 10 psi. This gave Trevithick a compact and flexible power source that could be used for a variety of purposes and, according to his vision, could actually physically propel itself to new work. Essentially he had invented the traction engine which wasn’t to be successfully patented and exploited until the 1860s.

Trevithick moved to London with his family in 1803, he had demonstrated his railway locomotive and a road stream carriage there initially but he moved on to work on dredging for the new docks, and also a tunnel under the Thames. He was frustrated that the Admiralty were unwilling to take on any of his ideas. Ultimately nothing came of his London stay, other than he was made briefly bankrupt. That said, he actually did a pretty good job on a tunnel under the Thames, a task only successfully completed by the Brunels following nearly 20 years of work from 1824.

Soon after returning to Cornwall from London he left again, this time without his family, to Peru where he had been taken on to supply and install steam engines for the mint in Lima, and a mine in Cerro de Pasco. His plans in Peru were foiled by revolution. He then moved on to Costa Rica, where he started a pearl-fishing business using a diving bell he had designed a few years earlier. He also attempted to start a gold mine but was unable to raise sufficient finance for this.

He died in 1833, 6 years after having returned from South America.

I’ve missed out any mention of Trevithick’s threshing machine, his ideas for steam-powered boats, a diving bell and using iron containers to carry liquids on boats!

I found this book fascinating, I’ve previously read books on Thomas Telford, George and Robert Stephenson, Matthew Boulton, Isambard Kingdom Brunel, and William Armstrong who collectively span the Industrial Revolution in England – Trevithick fits into the earlier part of this story.

It has led me to wondering a little about being “before their time”, this was very apparent in the Trevithick story with so many of his ideas only coming to fruition decades after he died. Was he exceptional or is this not so uncommon – we simply don’t hear about those whose ideas required other developments for them to work? The names that have been prominent from the Industrial Revolution are those that not only invented but also were commercially successful, at least some of the time – leaving lasting monuments to their ideas.

Book review: The Wood Age by Roland Ennos

My first book of 2023 is The Wood Age: How wood shaped the whole of human history by Roland Ennos, a history of wood and human society.

The book is divided into four parts “pre-human” history, up to the industrial era, the industrial era and “now and the future”.

Part one covers our ancestors’ life in the trees and descent from them. Ennos argues that nest building as practised by, for example, orangutans is a sophisticated and little recognised form of tool use and involves an understanding of the particular mechanical properties of wood. Descending from the trees, Ennos sees digging sticks and fire as important. Digging sticks are effective for rummaging roots out of the earth, which is handy if you moving away from the leaves and fruits of the canopy. Wood becomes harder with drying (hence making better digging sticks), and the benefits of cooking food with (wood-based) fire are well-reported. The start of controlled use of fire is unknown but could be as long ago as 2,000,000 years. The final step – hair loss in humans – Ennos attributes to the ability to build wooden shelters, this seems rather farfetched to me. I suspect this part of the book is most open to criticism since it covers a period well before writing, and with very little fossilised evidence of the key component.

The pre-human era featured some use of tools made from wood, and this continued into the “stone” age but on the whole wood is poorly preserved over even thousands of years. The oldest wooden tools discovered dates to 450,000 years ago – a spear found in Essex. The peak of tool making in the Neolithic is the bow and arrow – as measured by the number of steps required, and materials, required.

The next part of the book covers the period from the Neolithic through to the start of the Industrial Revolution. In this period ideas about farming spread to arboriculture, with the introduction of coppicing which produces high yields of fire wood, and wood for wicker which is a new way of crafting with wood. There is some detailed discussion on how wood burns, and how the introduction of charcoal, which burns hotter is essential to the success of the “metal” ages and progressing from earthenware pottery (porous and weak) to stoneware, which is basically glassy and requires a firing temperature of over 1000 celsius. As an aside, I found it jarring that Ennos quoted all temperatures in Fahrenheit!

This section has the air of describing a technology tree in a computer game. The ability to make metal tools, initially copper then bronze then iron then steel, opens up progressively better tools and more ways of working with wood, like sawing planks which can be used to make better boats than those constructed by hollowing out logs or splitting tree trunks. Interestingly the boats made by Romans were not surpassed in size until the 17th century.

Wheels turn out to be more complicated than I first thought, slicing a tree trunk into disks doesn’t work because the disks split in use (and in any case cutting cleanly across the grain of wood is hard without a steel-bladed saw). The first wheels, three planks cut into a circle and held together with battens, are not great. The peak of wheel building is the spoked wheel which requires steam bent circumference, turned spokes and a turned central hub with moderately sophisticated joints. Ennos argues that the reason South America never really took to wheels, and the Polynesians did not build plank built boats was a lack of metals appropriate for making tools.

Harder, steel tools also enabled the carpentry of seasoned timber – better for making furniture than greenwood which splits and deforms as it dries.

Ultimately the use of wood was not limited by the production of wood but rather by transport and skilled labour. The Industrial Revolution picks up when coal becomes the fuel of choice – making manufacturing easier, and allowing cities to grow larger.

The final substantive part of the book covers the Industrial Revolution up to the present. This is largely the story of the replacement of wood as fuel with coal, wood as charcoal (used in smelting) with coke (which is to coal what charcoal is to wood), and the replacement of many small wood items with metal, ceramic, glass and more recently plastic. It is not a uniform story though, England moved to coal as a fuel early in the 19th century – driven by an abundance of coal, a relative shortage of wood, and the growth of large cities. Other countries in Europe and the US moved more slowly. The US built its railways with wooden infrastructure (bridges and sleepers), rather than the stone used in Britain, for a much lower cost. The US still tends to build domestic buildings in wood. The introduction of machine made nails and screws in the late 18th century makes construction in wood a lower skilled activity. Paper based on wood was invented around 1870, making newspapers and books much cheaper.

In the 21st century wood and processed-wood like plywood or chipboard are still used for many applications.

The final part of the book is a short look into the future, mainly from the point of view of re-forestation. I found this a bit odd because it starts complaining about the “deforestation myth” but then goes on to outline when humans caused significant deforestation and soil erosion damage.!

Ennos sees wood as an under-reported factor in the evolution of humanity, but authors often feel their topic is under-reported. I suppose this is inevitable since these are people so passionate about their topic that they have devoted their energy to writing a whole book about it.

This is a nice read, not too taxing but interesting.

Review of the year: 2022

Chester Cathedral on Christmas Eve

As is traditional here I present an annual review of my blog which is largely comprised of book reviews but this year includes some technical posts as I learnt some new software engineering skills.

In book terms I started the year with Natives by Akala – this is the autobiography of Akala, – it fits into the Black Lives Matter theme which I started in the previous year. Railways and the Raj by Christian Wolmar also has something of this air, the way the British ran the Raj, and the subsequent violence on Partition are a salutatory lesson.

I read a couple of books about scripts, one specifically focussed on Chinese script – Kingdom of Characters by Jing Tsu, and a second, very short book, on all scripts – Writing and script – A very Short Introduction by Andrew Robinson.

From a technical point of view I read Felienne Hermans’ The Programmer’s Brain which definitely provided a lot of food for thought, Software Design Decoded by Marian Petre and André van der Hoek and Data mesh by  Zhamak Dehgani. The topic of this last book, the data mesh, has been a central theme of my work this year.

My favourite book of the year was Pale Rider – The Spanish Flu of 1918 by Laura Spinney which was written before the covid pandemic, it was interesting to see the differences – no effective vaccines, or even a clear understanding of viruses and the similarities – arguments over schools remaining open. I also read The Art of More by Michael Brooks – a history of maths, it turns out accounting and bureaucracy were important drivers in the invention of maths. The last book of the year was Dutch Light by Hugh Aldersey-Williams – a biography of Christiaan Huygens – the second I have read.

On a more general history front I read Ask a Historian by Greg Jenner and Curious devices and mighty machines by Samuel J.M.M. Alberti, which is about science museums.

I continue to learn how to play the guitar, Play it Loud by Brad Tolinski and Alan Di Perna fits in with this – it is a history of the electric guitar, broader than The Birth of Loud by Ian S. Port which I read a few years ago. I have stopped with learning to play the (electronic) drums.

My posting this year was a bit more varied than it has been for a while, I started a thread of technical posts written as I clarified my thinking for a project I am working on at work – one of which, Understanding setup.py, setup.cfg and pyproject.toml in Python, has been my most popular blog post by a large margin and boosted traffic to my blog to the highest level ever! That’s not to say traffic is particular high – I had about 20,000 visitors this year. Versioning in Python was in a similar vein – technical information about some very specific technology. A way of working: data science and Software engineering for Data Scientists were a bit more general and philosophical, they have received rather less traffic.

In the summer the whole family joined Chester’s mid-Summer Parade as pirates which was a great deal of fun.

Thomas, Sharon and I (from the right) with two other pirates!

On the holiday front, we went to Ambleside in the Lake District for a week in July. The photos below are from Allan Bank by Grasmere – an exceedingly relaxed National Trust property. I was impressed by my new phone’s ability to take reasonable photos through windows – normally the inside of the room would be under-exposed, the photo album for the trip is here with many more photographs.

We also went to Dorset in October, where I grew up, stopping off at the gardens at Stourhead on the way down (pictured below). I scattered the ashes of my dad and stepmother with my stepbrothers in the New Forest. I was surprised how much ashes were involved – a large bag of flour-sized quantity for each of them. Dad would have been proud that two parties converged from two directions on the same location in the middle of the Forest from an X on an Ordnance Survey map, probably less impressed by me getting lost in a bog on the way back! Although as Mrs H said, getting lost having said a final farewell to my dad was rather symbolic. I posted a eulogy for my dad, here.

More photos from Dorset, including the Tank Museum, Monkey World and the Slimbridge Wetland Centre on the way back, here.

The Winter brought more entertainment, on the left you see me in my suit for the office Christmas Party. It is difficult to appreciate the sparkly-ness of the shoes but they are still out since I enjoy seeing them sparkle. On the right is the chief Roman from Chester’s Saturnalia celebration.

We all got covid earlier in the year, I still haven’t got back to my former running form – 10km in 50 minutes, I can only manage 3km in 15 minutes and struggle to run much further without post-exercise malaise setting in. My Garmin running watch generously tells me I still have the body of a 31 year old, 21 years younger than my calendar age!

I’ve have had quite a lot of counselling for anxiety this year – featuring Eye Movement Desensitization and Reprocessing (EMDR) which I insisted on referring to as “disco lights”. It appears to have worked to some degree although in the depths of winter when I’m not doing anything that induces anxiety it is difficult to tell.