Spider silk

Photo by Fir0002/flagstaffotos (GFDL license)

I’ve never worked on spider silk myself, but my work on synthetic polymers and biological physics took me to conferences where spider silk work was presented and it always struck me as a very interesting. Spider silk has a rather impressive set of material properties, yet it is produced rapidly at the back end of a spider under everyday conditions. This is a pretty electron micrograph of spider spinnarets from where the silk comes (warning: page includes creepy crawlies).

I introduced molecules, and proteins back in this post. Proteins are the key molecules used to make organisms, an organism’s DNA are the instructions to make a set of proteins. Spider silk is made from protein. A spider is able to produce a whole range of silks with different physical properties: dragline silk is used to make the outer-rim and spokes of a web and is strong and tough; capture-spiral silk is sticky, stretchy and tough; tubiliform silk is used for egg cases and is the stiffest; aciniform silk used for wrapping prey is the toughest; minor-ampullate silk used to make temporary scaffolding for building a web (it’s not as strong but very stretchy). From a technical point of view “strong” refers to how hard it is to stretch something, and “tough” refers to how hard it is to break something. Spider silk is similar to silkworm silk but it is stronger and more extensible.

The properties of spider silk arise from it’s microstructure, essentially the protein molecules make a very fine net held together with little crystals. The fact that crystals form is a function of the protein structure, exactly how many and what distribution of crystals form is influenced by how the spider treats the silk-protein solution as it comes out of it’s spinnarets. Precisely how the spider achieves this isn’t entirely clear, the protein starts off in a liquid solution, the spinnarets force the liquid out into the air whilst changing things such as the salinity, concentration and pH of the liquid and “Hey, presto” it turns into silk! It would be nice if we could farm spiders for their silk unfortunately this is difficult, they just don’t get on with each other.
The strength of natural materials is often compared to that of steel, but there is a trick to watch out for here: the comparison is often based on weight. Steel is about x10 denser than silk, so your strand of equivalent strength is rather fatter if it is made from silk.

The closest synthetic material to spider silk in terms of it’s strength per weight is Kevlar. Kevlar is processed using hot sulphuric acid under high pressure which as you might imagine is not very nice. Spider silk, on the other hand is made at room temperature and pressure from an aqueous solution of benign materials.  Not only this, a spider can eat the silk it’s already made and use it to make more silk. As scientists, this makes us more than a little bit jealous.

Not only is spider silk interesting of itself, but from a material scientist point of view, it really isn’t fun to make and use new polymers (you need to build expensive plant to make them, you need to work out your ingredient supply chain, you need to check for safety and environmental problems). If, on the other hand, you can get the properties you want from one of your pre-existing polymers by changing the microstructure then life is much easier. Spider silk may provide hints as to how this might be done.

The neat thing about this story is that it illustrates an important point: we can genetically engineer bacteria and goats to produce the protein in spider silk but not make nice silk-like stuff. Knowing the sequence of amino acids that a spider is making is not enough to make silk. In much the same way knowing the proteins that go up to make up a human is rarely enough to understand, let alone cure, a disease. 

Scientists have done research on the effect of different drugs on web spinning, filmmakers have made some fun of this experiment* (warning: contains spiders). Other interesting biomaterials include, mollusc adhesive and slug slime and I’ve already written about why butterflies are blue.

Update: Curtesy of @happymouffetard, the evolutionary origin of spider-silk spinnarets appears to be hair follicles, according to this article.


*Thanks to Stephen Curry for pointing me to the “spiders on drugs” video.

Some notes on SQL: 6 – Multi-table operations

This is the sixth in a series of blog posts on SQL, the first covered creating a database, the second selecting information from a database, the third commands to modify the structure and contents of an existing database, the fourth, advanced selection. The fifth post covered database design. This post covers multi-table database operations. No claim of authority is made for these posts, they are mainly intended as my notes on the topic.

Good database design leads us to separate information into separate tables, the information we require from a SELECT statement may reside in multiple tables. There are keywords and methods in SQL to help with extracting data from multiple tables. To assist with clarity aliases, indicated using the AS keyword, allow tables to be given shorter, or clearer, names temporarily. Various JOIN keywords enable lookups between tables, as with other aspects of SQL there are multiple ways of achieving the same results – in this case ‘subqueries’.

The AS keyword can be used to populate a new table with the results of a SELECT statement, or it can be used to alias a table name. In it’s aliasing guise it can be dropped, in shorthand. This is AS being used in table creation:
CREATE TABLE profession
(
id         INT(11) NOT NULL AUTO_INCREMENT PRIMARY KEY,
profession VARCHAR(20)
) AS
SELECT profession
FROM   my_contacts
GROUP  BY profession
ORDER  BY profession;

The following two forms are equivalent, the first uses the AS to alias, the second uses an implicit alias:
SELECT profession AS mc_prof
FROM   my_contacts AS mc
GROUP  BY mc_prof
ORDER  BY mc_prof;


SELECT profession mc_prof
FROM   my_contacts mc
GROUP  BY mc_prof
ORDER  BY mc_prof;



The following examples use two tables boys which is a three column table {boy_id, boy, toy_id} and toys a two column table {toy_id, toy}.

boy_id boy toy_id
1 Davey 3
2 Bobby 5
3 Beaver 2
4 Richie 1
toy_id toy
1 Hula hoop
2 balsa glider
3 Toy soldiers
4 Harmonica
5 Baseball cards

Cross, cartesian, comma join are all names for the same, relatively little used operation which returns every row from one table crossed with every row from a second table, that’s to say two 6 row tables will produce a result with 36 rows. Although see here for an application.
SELECT t.toy,
b.boy
FROM   toys AS t
CROSS JOIN boys AS b;

Notice the use of the period and aliases to reference columns, this query will produce a 20 row table.

Inner join combines the rows from two tables using comparison operators in a condition, an equijoin returns rows which are the same, a non-equijoin returns rows that are different. These are carried out with the same keywords, the condition is different. This is an equijoin:
SELECT boys.boy,
toys.toy
FROM   boys
INNER JOIN toys
ON boys.toy_id = toys.toy_id;

The ON and WHERE keywords can be used interchangeable; in this instance we do not use aliases furthermore since the columns in the two tables (toys and boys) have the same name we could use a natural join:
SELECT boys.boy,
toys.toy
FROM   boys
NATURAL JOIN toys;



Natural join is a straightforward lookup operation, a key from one table is used to extract a matching row from a second table, where the key column has the same name in each table. Both of these versions produce the following table:

boy toy
Richie hula hoop
Beaver balsa glider
Davey toy soldiers
Bobby harmonica



A non-equijoin looks like this:
SELECT boys.boy,
toys.toy
FROM   boys
INNER JOIN toys
ON boys.toy_id<>toys.toy_id
ORDER  BY boys.boy;

the resultant in this instance is four rows for each boy containing the four toys he does not have.

Outer joins are quite similar to inner joins, with the exception that they can return rows when no match is found, inserting a null value. The following query
SELECT b.boy,
t.toy
FROM   boys b
LEFT OUTER JOIN toys t
ON b.toy_id = t.toy_id;

produces this result

Boy toy
Richie Hula hoop
Beaver balsa glider
Davey Toy soldiers
NULL Harmonica
Bobby Baseball cards

That’s to say each row of the toys table is taken and matched to the boys table, where there is no match (for toy_id=4, harmonica) a null value is inserted in the boy column. Both LEFT OUTER JOIN and RIGHT OUTER JOIN are available but the same effect can be achieved by swapping the order in which tables are used in the query.


In some instances a table contains a self-referencing foreign key which is the primary key of the table. An example might be a three column table, clown_info, of “clowns” {id, name, boss_id} where each id refers to a clown name and the bosses identified by boss_id are simply other clowns in the same table. To resolve this type of key a self-join is required this uses two aliases of the same table.
SELECT c1.name,
c2.name AS boss
FROM   clown_info c1
INNER JOIN clown_info c2
ON c1.boss_id = c2.id; 



Notice both c1 and c2 alias to clown_info.

Keywords: AS, ON, INNER JOIN, NATURAL JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, UNION, INTERSECT, EXCEPT

The Periodic Table

Understanding the Periodic Table is very much like making love to a beautiful woman, there’s no point rote-learning the location of the different elements if you don’t know what they do… langtry_girl*

The Periodic Table of the Elements is a presentation of the known elements which provides information on the relationships between those elements in terms of their chemical and physical properties. An element is a type of atom: iron, helium, sulphur, aluminium are all examples of elements. Elements cannot be broken down chemically into other elements, but elements can change. An atom is comprised of electrons, protons and neutrons.

This is all very nice, but if you look around you: at the wallpaper, the computer screen, the table – very little of what you see is made from pure elements. They’re made from molecules (pure elements joined together), and the molecules are arranged in different ways which may be completely invisible. So in a sense the periodic table represents the bottom of the tree of knowledge for people interested in materials, other scientists may be more interested in what makes up the elements.

The periodic table, approximately as it is seen today, was discovered by Dmitri Mendeleev in 1869, he designed it based on the properties of the elements known at that time. For a scientist the Periodic Table is pleasing, it says of the elements: “this many and no more”. It also stands as one of the great scientific predictions: Mendeleev proposed new elements based on his table constructed from the known elements and ,behold, they appeared with roughly the properties he expected.
Mendeleev’s periodic table was a work of organisation, it later turned out through the discovery of quantum mechanics that the periodicity and order found in the table can be derived from the behaviour of electrons in atoms.
To reverse a little, there is scope for more elements in the periodic table, they appear tacked on at the end of the table and are made artificially. The experimental scheme to achieve this is to fire atoms of existing elements into each other in the in the hope that they’ll fuse, occasionally they do, but the resulting atoms have a fleeting existence. They are rarely found in any number and vanish in fractions of a second, they are not elements of which you can grab hold. This has always struck me as being akin to flinging the components of a car off a cliff and claiming you have made a car when momentarily the pieces look like a car as they plummet to the ground.
I had a struggle here deciding whether to describe the periodic table as being designed, invented, or discovered. I stuck with discovered, because discovering is what scientists do, inventing is for inventors and designing is for designers ;-) It does raise an interesting philosophical question which has no doubt been repeatedly discussed down through the ages.

As a design, shown above, the periodic table is a cultural icon which everyone knows. Even if they don’t understand what it means, they know what it stands for – it stands for science. How to make sure people know your scene is set in a lab or your character is a scientist? Bung in a periodic table. It has been purloined to organise other sorts of information, such as Crispian Jago’s rather fine “Periodic Table of Irrational Nonsense“, some more examples here. There is a song.

At various times in my life I’ve been able to name and correctly locate all the elements in the periodic table, normally takes a bit of effort and some mnemonics to help. Increasingly now, I can remember the mnemonics but not the elements they refer to.

Different parts of the periodic table are important to different sorts of scientists. To organic chemists carbon (C), hydrogen (H), oxygen (O), nitrogen (N) hold the majority of their interest with walk on parts for some of the transition metals (the pink ones in a block in the middle) which act as catalysts. Inorganic chemists are more wide ranging, only really forbidden from the Noble Gases (helium (He), neon(Ne), argon (Ar), krypton (Kr), xenon (Xe)) which refuse to react with anything. Semi-conductor physicists are after the odd “semi-metals”: silicon (Si), indium (In), gallium (Ga), germanium (Ge), arsenic (As). For magnets there’s iron (Fe), cobalt (Co), nickel (Ni) along with other transition metals and the Lanthanides. The actinides are for nuclear physicists, radiation scientists and atomic bomb makers. Hydrogen is for cosmologists. In this view, as a soft condensed matter physicist, I am closest to the organic chemists.

I’m rather fond the periodic table, it is the scientist’s badge, but I’m scared of fluorine.

*To be fair to langtry_girl, I pondered on twitter “Trying to finish the sentence: “Understanding the Periodic Table is very much like making love to a beautiful woman…” and I think hers was the best reply. It is, of course, a reference to Swiss Toni.

Some notes on SQL: 5 – database design

This is the fifth in a series of blog posts on SQL, the first covered creating a database, the second selecting information from a database, the third commands to modify the structure and contents of an existing database, the fourth on advanced selection. This post covers database design, as such it is a little lighter on the code examples. No claim of authority is made for these posts, they are mainly intended as my notes on the topic. These notes are based largely on Head First SQL.

The goal of database design is to produce a database which is straightforward and efficient to search. This is done by splitting data into a set of tables, with lookups between those tables used to build the desired output results.

Efficient database design is normally discussed with reference to “normal forms“, the goal being to reach the highest order normal form. In practice, pragmatism is applied which means it may be sensible to hold back a little on this.

First normal form – each row of data must contain atomic values, and each row of data must have a unique identifier, known as a Primary Key. “Atomic values” are essentially the smallest pieces into which data can be sensibly divided, this may depend on application. So, for example, in some cases a house address may be kept as a single text field whilst in others it might be divided into Number, Street, Town etc. Furthermore to be “atomic” data should not be repeated (i.e. a table containing interests should not contain columns “interest_1”, “interest_2″…The Primary Key may be a single column of ‘synthetic’ numbers (i.e. they don’t have any other purpose), or it may be a pre-existing column in the table, or it may be a combination of columns which case it is called a Composite Key. Primary and Composite Keys are indicated using the PRIMARY KEY keyword :

CREATE TABLE customer
(
sid        INTEGER,
last_name  VARCHAR(30),
first_name VARCHAR(30),
PRIMARY KEY (sid)
);

For a composite key, this form is used:
PRIMARY KEY (column_1,column_2,column_3)
Second normal form the table is in first normal form, and in addition contains no ‘partial functional dependencies’, this happens naturally with synthetic primary keys. Partial functional dependency means that a non-key column is dependent on some but not all of the columns in a composite primary key.

Third normal form the table is in second normal form, and in addition contains no ‘transitive dependencies’. Transitive functional dependency is when any non-key column is related to any of the other non-key columns. This page has a nice example, if we have a table with columns: {Project_id, manager_name, manager_address} then manager address and manager name are transitively dependent: change manager name and we change manager address. To address this in third normal form we split the table into two tables {Project_id, manager name} and {Manager_name, manager_address}. As the author writes:

In a normalised relation a non-key field must provide a fact about the key, the whole key and nothing but the key.

Relationships between tables in a database are indicated like this:

CREATE TABLE orders
(
order_id     INTEGER,
order_date   DATE,
customer_sid INTEGER,
amount       DOUBLE,
PRIMARY KEY (order_id),
FOREIGN KEY (customer_sid) REFERENCES customer(sid)
);
(Example borrowed from here). PRIMARY KEY and FOREIGN KEY are examples of ‘constraints’, primary keys must be unique and a foreign key value cannot be used in a table if it does not exist as a primary key in the referenced table. The CONSTRAINT keyword is used to give a name to a constraint (a constraint being one of NOT NULL, UNIQUE, CHECK, Primary Key, Foreign Key). CHECK is not supported in MySQL.

Keywords: PRIMARY KEY, CONSTRAINT, FOREIGN KEY, REFERENCES, CONSTRAINT

On choice

Choose life. Choose a job. Choose a career. Choose a family. Choose a big fucking television. Choose washing machines, cars, compact disc players and electric tin openers. Choose good health, low cholesterol and dental insurance. Choose fixed interest mortgage payments. Choose a starter home. Choose your friends. Choose leisure wear and matching luggage. Choose a three-piece suite and higher purchase a wide range of fucking fabrics. Choose D.I.Y. and wondering who the fuck you are on Sunday morning. Choose sitting in a large couch watching mind-numbing spirit-crushing game shows stuffing fucking junk food in your mouth. Choose rotting away at the end of it all, pissing your last in a miserable home, nothing more than an embarrassment to the selfish fucked-up brats you’ve sworn to replace yourself. Choose your future, choose life. But why would you want to do a thing like that? I chose not to choose life. I chose something else. – Trainspotting by Irving Welsh (Screenplay by John Hodge)

For the last 20 years or so politicians have been keen on offering us choice, my message is “I don’t want choice”!

Choice of schools is something of an academic question for me since I don’t have any children but I grew up in rural Dorset and there the offer of choice would have been hollow. There were two primary schools in my village : one Roman Catholic and one Church of England, following that we went to the local “Middle School” one mile away – next nearest offering five miles away, followed by an upper school five miles away and the nearest alternative 10 miles and above away (to be honest I don’t even know where the alternative would be)… and this in an area with a rural transport system, not an urban one. A great deal of effort is expended in trying to rank schools, there’s evidence showing this process is not very accurate – the vast majority of schools are statistically indistinguishable. And who says schools are so important for education? My educational success is down, in large part, to the support of my parents but no-one seems to mention that. No one wants to say: actually your child’s education is very much down to you.

We get choice in medical care these days too but how am I supposed to judge the quality of a doctor or a hospital? Set some bright people a target and they’ll do a fine job of hitting it but is the target really representing the thing you want? People are actually quite keen to go to the hospital that’s close to them. Do we really expect patients to make an informed choice of which hospital is best for them from a medical point of view. I’m pretty sure I couldn’t make an accurate choice of the best hospital for medical care. Best hospital for me is easy: it’s the one about half a mile from my house. And what’s the message you’re sending when you’re offering a choice of hospital or doctor and providing data that purports to represent quality?:

“Here’s a bunch of hospitals – make sure you chose the best one. Do you feel lucky?”

I’d much rather you made sure that it didn’t matter which hospitals I went to.

People don’t actually like lots of choice, academic research on jam shows that consumers are more likely to buy jam from a choice of 6 types than from a selection of 24 types, too much choice confuses and causes unhappiness. This chimes with my experience, to a large extent I’ve given up being a rational economic agent, live’s too short to sweat over a choice of 100 different TVs.

This problem of ranking difficult to rank things is quite general, I experience it myself at work in my targets. I’ve come to the tentative conclusion that for people working in areas without clearly quantifiable outputs (number of strawberries picked, widgets sold, football games won), ranking really amounts to three buckets: sack, ok, promote. Your sack and promote buckets should really be pretty small. Yet we expend great effort on making more precise gradings. More interestingly I remember as I sat through an interminable college meeting discussing with an English fellow the marking of students. Normally for degree courses there’s a certain amount of second marking, in physics where there are definite answers second marking works fairly well but for my colleague in English one marker could mark a First and the other a 2.2/3rd, for the same essay!

Don’t give me choice, give me uniformity!