Category: Book Reviews

Reviews of books featuring a summary of the book and links to related material

Book review: The Man from the Future by Ananyo Bhattacharya

von_neumannThe Man from The Future by Ananyo Bhattacharya has been sitting on my bedside table in the "to be read" pile for a little while. I was aware of Von Neumann largely through his work on computers, and game theory.

The book is organised thematically, firstly on Von Neumann’s early years then on the various fields in which he made contributions.

Neumann János Lajos was born in Budapest in 1903, the Hungary style was to put the family name first – his father was ennobled in 1903 – hence the "von" and he Anglicised his forename to John when he moved to America in 1930. Hungary, and Budapest, in Von Neumann’s time was a hot bed of intellectuals many of whom fled Europe to America with the rise of the Nazis. For someone with a background in physics it is a bit of a Who’s Who – Eugene Wigner, Leo Szilard, Theodore von Kármán, Edward Teller, Dennis Gabor – were all his contemporaries and he seemed to know them personally.

Von Neumann’s first contributions to the academic world were in set theory, he published a paper on defining cardinal and ordinal numbers in 1921 which still stands today. This was at a time when maths was undergoing a foundational crisis, which Einstein described as "Froschmäusekreig" – a war of frogs and mice – a term I aim to use in future!

The set theory paper was written whilst he was still at school, he then moved on to study simultaneously a degree in Chemistry at Berlin, chemical engineering in Zurich at ETH and a doctorate in maths at Budapest – passing all with flying colours. He then moved on to Göttingen in about 1925 where Heisenberg was working. Von Neumann’s contribution was Mathematical Foundations of Quantum Mechanics published in 1932 – not translated into English for 20 years. His key contribution was demonstrating that Heisenberg’s matrix mechanics and Schrödinger’s wave equation theories of quantum mechanics were equivalent. To a degree I feel his contribution held back the field, backing as it did the Copenhagen interpretation of quantum mechanics (i.e. "shut up and calculate") – it wasn’t until the late 1950’s that other started probing the philosophical foundations of quantum mechanics in more depth.

It was during this period he was enticed to Princeton and the Institute for Advanced Studies. As German science declined under the Nazis due to their purges of "undesirables" from the civil service and universities, American science which had been in the doldrums rose – one at the cost of the other.

Von Neumann was clearly politically astute and had seen war coming in the early thirties, in the late thirties he was pro-actively trying to join the US army – fortunately redirected into the Manhattan Project (a project stuffed with scientists later to become Nobel Prize winners). His key contributions were in the simulations done for the implosion bomb (at a time when the idea of computer simulations was radical and new and not yet expressed). I hadn’t realised before was that airburst bomb are used because they are more destructive than the same explosives detonated at ground level, this is why the Trinity test was executed on a tower. Von Neumann was also on the committee that chose the targets for the atomic bombs dropped on Japan at the end of the war.

Von Neumann’s work on the Bomb, and his mathematical interests led him naturally into computing. Prior to the war, as part of the fundamentals of mathematics, Kurt Gödel, Alan Turing and Alonzo Church had done work essential to the foundation of computing. Turing’s work in particular demonstrated that theoretically a machine could be built which could carry out any computation but Gödel had shown that not all problems were computable. Von Neumann met with Alan Turing in 1942, it is not clear what they talked about I imagine both the Bomb and Turing’s codebreaking work at the Bletchley Park were topics of conversation.

Von Neumann had worked with computing devices on implosion calculations, an activity in which his second wife Klára Dán von Neumann was heavily involved. After the war a number of groups were working on computers, and he was convinced that the computer would be more revolutionary than the atomic bomb. His key contribution was a draft report on the EDVAC computer being built at the Moore School of Engineering in the University of Pennsylvania. The significance of this report was that it described clearly the architecture of a modern computer with input and output units, a central processor, memory and so forth – previously computers had largely been designed for very specific tasks and appear to have been logically complex. Von Neumann’s report was widely circulated much to the chagrin of his collaborators who had hoped for lucrative patents on the design of computers.

Stepping back in time a bit, Von Neumann had started working on what would come to be known as "game theory" in the 1920s, publishing his first paper in this area in 1926, followed by another in 1937 and finally a book written with Oskat Morgenstern, Theory of Games in 1943. After the Second World War mathematicians started to infiltrate economics departments and apply game theory ideas to economic problems. This has resulted in some very lucrative public auctions (designed using ideas stemming from game theory), and a fair number of Nobel Prizes in economics.

After the Second World War the US government set up the RAND Corporation which was a think tank, possibly the original think tank. They undertook a wide range of research, trying to maintain the spirit that drove the development of the atomic bomb, radar, codebreaking during the Second World War but also operations research. Von Neumann acted as a consultant and was seen very much as the father of the organisation without necessarily holding an exalted formal position. It was at this time, when they had the only nuclear weapons that the US contemplated a first strike against the Soviets. Von Neumann started quite hawkish but become more dovish over time.

The final chapter of the book is on cellular automata, stimulated by Alan Turing’s universal machine, and also how life works – in the post-war period the structure and mechanism by which DNA works was being elucidated and a number of physicists were interested in both the structure of DNA and how it transmits information. Cellular automata are perhaps best know by John Conway’s Life game. His work was prompted by Von Neumann, although Von Neumann’s book on cellular automata was not published until 10 years after his death in 1957 from bone cancer.

I must admit the book made me think of the nature of a biography, this one is quite heavily focused on scientific themes – Von Neumann is usually introduced at the beginning of the chapter with an outline of his contributions but then a wider cast of characters are brought in. The alternative is more focussed on the minutiae of the central characters life.

From a personal point of view we find Von Neumann is a bit of party animal, married twice with one daughter. His wives found him rather absorbed in his work. His occasionally harsh exterior harboured a more caring private side.

The Man from the Future is an enjoyable read if you have some interest in computing and physics, although deep knowledge of those areas is not required.

Book review: On Savage Shores by Caroline Dodds Pennock

on_savage_shores.Another book from those I follow on Twitter, On Savage Shores by Caroline Dodds Pennock which is about the Indigenous people who came to Europe in the early years of the invasion of the Americas.

The book is divided thematically into six chapters titled Slavery, Go-betweens (covering translators), Kith and Kin (the transport of families, and the adoption of Indigenous people – mainly boys – by Spanish men), the Stuff of Life (about products such as potatoes, tomatoes, tobacco and so forth), Diplomacy, and Spectacle and Curiosity (about Indigenous people as entertainment).

The focus is on Meso- and South America and the 16th century, when most of the interactions were with Spain and Portugal. There is some mention of colonisation of North America which was more related to Britain, and Brazil which was an interest to the French.

I think the thing that struck me most was the number of Indigenous people in Europe, particularly in Spain, from the very start of the 16th century. I had been aware from reading the history of various scientific expeditions that one or two Indigenous people were often brought back to show off in court. But On Savage Shores highlights that in fact thousands of people were brought, often crossing the Atlantic several times over a period of years. Many were brought explicitly as slaves but others came as diplomats, translators, companions although it is unclear in many cases how voluntary their travel was.

The second aspect which struck me was how active, and engaged in the Spanish legal systems and the Royal courts the Indigenous visitors often were, this was in part because Indigenous people were familiar with legal processes in their own countries. Furthermore courts both legal and Royal are an excellent source of primary documents, it is one of very few ways the Indigenous people were documented. Documents generated by Indigenous people are rather more sparse – there are a handful of pre-invasion codices, some spoken poetry captured in writing at a later date and legal-like documents created to support land claims and the like in Spanish courts. Many of the European records are of those seeking emancipation, quite often successfully. 

Columbus very clearly went to the New World with a view to capturing slaves – he had visited the Portuguese slaving fortress, Castle of Sao Jorge da Mina in Ghana prior to his visit and was evaluating the Indigenous people and their suitability for slavery from his first visits to the Americas. To the end of the 16th century something between 1 and 2 million Indigenous people were taken as slaves with most remaining in the Americas but some being brought back to Spain. In the same period about 300,000 Africans were enslaved and taken to the Americas. In theory Spain banned slavery in the mid-16th century, however it wrote itself a number of exceptions which meant the practice was to effectively continue in large volumes for many years.

As well as slaves the Europeans took people they saw as suitable as translators, they also took the children of important Indigenous leaders and some that acted as diplomats – taking their cases to the Spanish Court. For these people the level of coercion is difficult to ascertain. There were certainly a number who came to Europe voluntarily but others had little choice.

A recurring theme is the adoption of sons into the families of, for example Walter Raleigh, Christopher Columbus, and Hernando Cortés. This practice seems to have some basis in Indigenous practices and the adopted sons often gained relatively high social positions back in Europe. Similarly there is a Brazilian boy, Essomericq taken at age 15 by the French in 1504 who became a pillar of the community in France before dying at the age of 90 – although his story is somewhat in question having been recorded sometime after he died by a descendant with a point to prove.

There was a huge population collapse across the Americas due to European diseases in the fifty years after Columbus landed, the diseases travelled faster than the European invaders. The movements of Indigenous people need to be seen in this context, first of all the trans-Atlantic passage was a long grim voyage for all – taking in excess of 6 weeks in the 16th century. Added to this Indigenous people were vulnerable to European diseases, and frequently died in transit or within a few weeks of arriving in Europe. All Europe got in exchange was syphilis. Some of the Indigenous people travelling to Europe were looking for advantage from Spanish support back in their home countries which were in turmoil.

On Savage Shores was revelatory for me, it changed the way I thought about Indigenous people and, to a smaller degree, the Spanish invaders. The switch in viewpoint makes Indigenous people, just that – people – rather than exhibits. On Savage Shores is also an enjoyable read, the focus on one period and one region probably keeps it to a manageable length down a bit. It feels like there is scope for a second book focussed on North America.

Book review: Richard Trevithick – Giant of Steam by Anthony Burton

A second hand book to review this time, Richard Trevithick – Giant of Steam by Anthony Burton. I bought it in Malvern. Richard Trevithick is best know as the inventor of the steam railway locomotive – the first person to put a steam engine on a carriage with wheels and put that carriage on metal rails. This followed his demonstration of a steam road carriage in 1801, with the railway locomotives in the following couple of years.

Richard Trevithick was born near Camborne in Cornwall to Ann Teague (a miners daughter) and Richard Trevithick Senior, a mine “captain”, in 1771. He died in 1833. He had a wife, Jane who would be well-described as “long-suffering” – Trevithick had little interest in providing a steady income for his family or at least if he had the desire he was inept at executing it and was briefly bankrupt in 1815. Furthermore he left for South America for a period of 11 years from 1816 to 1827, with little communication back home with his wife and friends in England during that period. Despite this his six children, and his wife, seemed to have held him in at least some regard and his son Francis, at the very least in high regard. Jane Trevithick lived until 1868.

The Cornish mining milieu is a key feature of his upbringing and subsequent career. The mine “captains” were very hands-on managers who led mining operations at the Cornish mines. They often had significant financial interest in mines. Cornwall in the 18th century was seen as a bit of an English Wild West with a degree of opposition to ideas developed outside the area. Steam engines had been born in the South West to drain mines, with the first made by Thomas Savery in 1698, followed by Thomas Newcomen’s more practicable engine invented in 1712. Both Savery and Newcomen were from the neighbouring county of Devon.

The James Watt / Matthew Boulton steam engine was to dominate the market for steam engines in the United Kingdom from 1775 until the end of the 18th century. It was a more efficient engine than those that went before, commercially it was protected aggressively by Watt and Boulton using patents which supressed other developments in the area until they expired.

Trevithick had a fairly minimal education but seemed to be a very adept calculator, he was a large, strong man with something of a temper. This caused him problems later in life with some of his inventions which essentially failed because he fell out massively with his backers/potential customers and stopped work on them. He had a life-long friendship with Davies Gilbert who was more scientifically inclined. Trevithick quickly moved to working in the local mines first as a helper to his father but then in his own right. It’s interesting that steam engines would have been a regular part of the Cornish mining industry for seventy or so years before Trevithick entered the scene. Developments were clearly relatively slow until the arrival of the Watt/Boulton engine. The key scientific development in the area, the discovery of latent heat – the energy required to bring water from the liquid to gaseous state – was only published in 1763 by Joseph Black.

On railway locomotives it turned out Trevithick was a little before his time, George Stephenson was to successfully kick off the railway revolution with the Stockton and Darlington Railway in 1825 and the Liverpool and Manchester line in 1829 – twenty or so years after Trevithick’s demonstration. Trevithick’s effort suffered from two issues, one systematic issue was Trevithick’s approach which was to demonstrate many ideas but never to follow them through to successful, commercial exploitation. The second, technical, issue was that iron rails at the time were not tough enough to handle the weight of a steam engine and soon fractured. Interestingly Robert Stephenson, George’s son and a significant railway engineer in his own right, met Trevithick in Columbia in 1826.

Trevithick’s real innovation was in developing a high pressure steam engine, operating at pressures ultimately in excess of 150 psi compared the Watt-Boulton engine operating at less than 10 psi. This gave Trevithick a compact and flexible power source that could be used for a variety of purposes and, according to his vision, could actually physically propel itself to new work. Essentially he had invented the traction engine which wasn’t to be successfully patented and exploited until the 1860s.

Trevithick moved to London with his family in 1803, he had demonstrated his railway locomotive and a road stream carriage there initially but he moved on to work on dredging for the new docks, and also a tunnel under the Thames. He was frustrated that the Admiralty were unwilling to take on any of his ideas. Ultimately nothing came of his London stay, other than he was made briefly bankrupt. That said, he actually did a pretty good job on a tunnel under the Thames, a task only successfully completed by the Brunels following nearly 20 years of work from 1824.

Soon after returning to Cornwall from London he left again, this time without his family, to Peru where he had been taken on to supply and install steam engines for the mint in Lima, and a mine in Cerro de Pasco. His plans in Peru were foiled by revolution. He then moved on to Costa Rica, where he started a pearl-fishing business using a diving bell he had designed a few years earlier. He also attempted to start a gold mine but was unable to raise sufficient finance for this.

He died in 1833, 6 years after having returned from South America.

I’ve missed out any mention of Trevithick’s threshing machine, his ideas for steam-powered boats, a diving bell and using iron containers to carry liquids on boats!

I found this book fascinating, I’ve previously read books on Thomas Telford, George and Robert Stephenson, Matthew Boulton, Isambard Kingdom Brunel, and William Armstrong who collectively span the Industrial Revolution in England – Trevithick fits into the earlier part of this story.

It has led me to wondering a little about being “before their time”, this was very apparent in the Trevithick story with so many of his ideas only coming to fruition decades after he died. Was he exceptional or is this not so uncommon – we simply don’t hear about those whose ideas required other developments for them to work? The names that have been prominent from the Industrial Revolution are those that not only invented but also were commercially successful, at least some of the time – leaving lasting monuments to their ideas.

Book review: The Wood Age by Roland Ennos

My first book of 2023 is The Wood Age: How wood shaped the whole of human history by Roland Ennos, a history of wood and human society.

The book is divided into four parts “pre-human” history, up to the industrial era, the industrial era and “now and the future”.

Part one covers our ancestors’ life in the trees and descent from them. Ennos argues that nest building as practised by, for example, orangutans is a sophisticated and little recognised form of tool use and involves an understanding of the particular mechanical properties of wood. Descending from the trees, Ennos sees digging sticks and fire as important. Digging sticks are effective for rummaging roots out of the earth, which is handy if you moving away from the leaves and fruits of the canopy. Wood becomes harder with drying (hence making better digging sticks), and the benefits of cooking food with (wood-based) fire are well-reported. The start of controlled use of fire is unknown but could be as long ago as 2,000,000 years. The final step – hair loss in humans – Ennos attributes to the ability to build wooden shelters, this seems rather farfetched to me. I suspect this part of the book is most open to criticism since it covers a period well before writing, and with very little fossilised evidence of the key component.

The pre-human era featured some use of tools made from wood, and this continued into the “stone” age but on the whole wood is poorly preserved over even thousands of years. The oldest wooden tools discovered dates to 450,000 years ago – a spear found in Essex. The peak of tool making in the Neolithic is the bow and arrow – as measured by the number of steps required, and materials, required.

The next part of the book covers the period from the Neolithic through to the start of the Industrial Revolution. In this period ideas about farming spread to arboriculture, with the introduction of coppicing which produces high yields of fire wood, and wood for wicker which is a new way of crafting with wood. There is some detailed discussion on how wood burns, and how the introduction of charcoal, which burns hotter is essential to the success of the “metal” ages and progressing from earthenware pottery (porous and weak) to stoneware, which is basically glassy and requires a firing temperature of over 1000 celsius. As an aside, I found it jarring that Ennos quoted all temperatures in Fahrenheit!

This section has the air of describing a technology tree in a computer game. The ability to make metal tools, initially copper then bronze then iron then steel, opens up progressively better tools and more ways of working with wood, like sawing planks which can be used to make better boats than those constructed by hollowing out logs or splitting tree trunks. Interestingly the boats made by Romans were not surpassed in size until the 17th century.

Wheels turn out to be more complicated than I first thought, slicing a tree trunk into disks doesn’t work because the disks split in use (and in any case cutting cleanly across the grain of wood is hard without a steel-bladed saw). The first wheels, three planks cut into a circle and held together with battens, are not great. The peak of wheel building is the spoked wheel which requires steam bent circumference, turned spokes and a turned central hub with moderately sophisticated joints. Ennos argues that the reason South America never really took to wheels, and the Polynesians did not build plank built boats was a lack of metals appropriate for making tools.

Harder, steel tools also enabled the carpentry of seasoned timber – better for making furniture than greenwood which splits and deforms as it dries.

Ultimately the use of wood was not limited by the production of wood but rather by transport and skilled labour. The Industrial Revolution picks up when coal becomes the fuel of choice – making manufacturing easier, and allowing cities to grow larger.

The final substantive part of the book covers the Industrial Revolution up to the present. This is largely the story of the replacement of wood as fuel with coal, wood as charcoal (used in smelting) with coke (which is to coal what charcoal is to wood), and the replacement of many small wood items with metal, ceramic, glass and more recently plastic. It is not a uniform story though, England moved to coal as a fuel early in the 19th century – driven by an abundance of coal, a relative shortage of wood, and the growth of large cities. Other countries in Europe and the US moved more slowly. The US built its railways with wooden infrastructure (bridges and sleepers), rather than the stone used in Britain, for a much lower cost. The US still tends to build domestic buildings in wood. The introduction of machine made nails and screws in the late 18th century makes construction in wood a lower skilled activity. Paper based on wood was invented around 1870, making newspapers and books much cheaper.

In the 21st century wood and processed-wood like plywood or chipboard are still used for many applications.

The final part of the book is a short look into the future, mainly from the point of view of re-forestation. I found this a bit odd because it starts complaining about the “deforestation myth” but then goes on to outline when humans caused significant deforestation and soil erosion damage.!

Ennos sees wood as an under-reported factor in the evolution of humanity, but authors often feel their topic is under-reported. I suppose this is inevitable since these are people so passionate about their topic that they have devoted their energy to writing a whole book about it.

This is a nice read, not too taxing but interesting.

Book review: Dutch Light by Hugh Aldersey-Williams

dutch_lightIt’s taken me a while but my next review is of Dutch Light: Christian Huygens and the making of science in Europe by Hugh Aldersey-Williams.

I have read a biography of Christiaan Huygens – Huygens – the man behind the principle by C.D. Andriesse, this was a little over 10 years ago so it says something about my memory that I came to Aldersey-Williams book fairly fresh!

Huygens was born in 1629 and died in 1695, so after Galileo (1564 – 1642) and René Descartes (1596-1650) but before Isaac Newton (1642-1726).

Huygens came from a relatively prestigious family his father, Constantijn was an important diplomat as was his brother (also Constantijn, the Huygens reused forenames heavily!). The family had a broad view of education and his father and brothers were brought up to appreciate, and make, art, music, and drawing as well as learning more academic subjects. Christiaan’s scientific collaboration with his brother continued throughout his life – mainly focussed on lens grinding.

This practical turn had an impact on Huygen’s scientific work, he made the lenses and telescopes that he used to discover the rings of Saturn, and his discovery was sealed with the beautifully drafted illustrations of Saturn’s rings seen at varying orientations relative to earth. It had been known since Galileo’s time that there was something odd about Saturn but telescope technology was such that the rings were not clearly resolved, furthermore as earth changes position relative to Saturn we view the rings at different angles which changes their appearance which added to the confusion over their nature. Having hypothesised that the structures around Saturn were rings, Huygens was able to predict (successfully) when the rings would be oriented edge on to earth and hence disappear.

The Netherlands has given birth to more than its share of astronomers, Aldersey-Williams discusses whether this is a special feature of the landscape: big open skies with reflecting water, material resources – abundant high quality sand for glass/lens making or the culture – in particular the Dutch school of art from the period. He doesn’t come to a firm conclusion on this but gives the book its title.

Huygens work on telescopes and Saturn also led to his more theoretical work on a wave theory of optics and the “Huygens Principle”, something I learnt at school.

Aside from his practical work on astronomy, Huygens was a very capable mathematician – respected by Newton and Leibniz. His work pre-figured some of Newton’s later work, he led the way in describing nature, and observations, with mathematical equations. A was a transitional figure at the cusp of the Scientific Revolution, a pioneer of described observed phenomena using maths – diverging from Descartes who believed that nature could be explained by the power of pure thought.

Huygens also worked on clocks, largely in relation to the problem of the longitude, again this is an example of a combination of practical design skills and mathematical understanding. His main contributions in this area were modifications of pendulum clocks to be more accurate and the invention of a spring driven oscillator – more robust than pendulum driven clocks at sea. In the end his contributions were not sufficient to solve the problem of the longitude, and he also fell out with Hooke over the invention of the spring drive. He also had a dispute with Huret, the clockmaker who implemented his designs. But if you were working in science in the 17th century and didn’t fall out with Hooke, what sort of scientist were you?!

“…the making of science in Europe” in the title of this book refers to Huygens international activities. He was a founding member of the French Academie des Science, courted specifically by its prime mover – Jean-Baptiste Colbert, living in Paris for 16 years between 1666-1672. Colbert’s successor was not as favourable disposed towards Huygens, and when Colbert died in 1683 he left the Academie. Huygens also met and corresponded with scientists in London, at the Royal Society and elsewhere, and across the rest of Europe. This was a time when discoveries, and experimental techniques were being shared more often, if not universally.

Andriesse and Aldersey-Williams both ask why Huygens is not more famous when compared particularly to Newton. I’ve thought about this a bit since reading Andriesse’s book and come to the tentative conclusion that figures like Galileo, Newton, Einstein and Hawking are not famous scientists. They are famous, and they happen to be scientists, they are symbols for a period not necessarily rooted in scientific achievement. Newton was promoted very heavily after his death by the English, and prior to his death he was not only a scientist but also Warden of the Royal Mint, and briefly an MP.

I enjoyed this book more than the Andriesse biography, in both cases it felt that there was perhaps a scarcity of material for Huygens life which led to a great deal of discussion around Huygens father, to the extent that in the early pages it wasn’t clear whether references to Huygens were to Christiaan or his father Constantijn.