Tag: History

Book review: The Eighth Day of Creation by Horace Freeland Judson

EighthDayMy reading moves seamlessly from the origins of cosmology (in Koestler’s Sleepwalkers) to the origins of molecular biology in “The Eighth Day of Creation” by Horace Freeland Judson. The book covers the revolution in biology starting with the elucidation of the structure of DNA through to how this leads to the synthesis, by organisms, of proteins – this covers a period from just before the Second World War to the early 1960s although in the Epilogue and Afterwords. Judson comments on the period up to the mid-nineties. Although the book does provide basic information on the core concepts (What is DNA? What is a protein?), I suspect it requires a degree of familiarity with these ideas to make much sense on a casual reading – the same applies to this blog post.

The first third or so of the book covers the elucidation of the structure of DNA. Three groups were working on this problem – that of Linus Pauling in the US, Franklin and Wilkins at Kings College in London and Crick and Watson in Cambridge. Key to the success of Crick and Watson was their collaboration: a willingness to talk to people who knew stuff they needed to know, and piecing the bits together. The structural features of their model were the helix form (this wasn’t news), specific and strong hydrogen bonding between bases, and the presence of two DNA chains (running in opposite directions). On the whole this wasn’t a new story to me, although I wasn’t familiar with the surrounding work which established DNA as the genetic material. Judson returns to the part Rosalind Franklin in the discovery in one of the Afterwords. It has been said that Franklin was greatly wronged over the discovery of DNA, but Judson does not hold this view and I tend to agree with him. The core of the problem is that the Nobel Prize is not awarded posthumously, and with her death at 37 from cancer, Franklin therefore missed out. Watson’s book The Double Helix was a rather personalised view of the characters involved most of whom were alive to carry out damage limitation, whilst Franklin was not – so here she was poorly treated but by Watson rather than a whole community of scientists. Perhaps the thing that said the most to me about the situation is that after she was diagnosed with cancer she stayed with Cricks at their home.

In parallel with the elucidation of the structure of the DNA work had been ongoing with understanding protein synthesis and genetics in viruses and bacteria. This included both how information was coded into DNA, with much effort expended in trying to establish overlapping codes. There are 20 amino acids and four bases in DNA, so three base pairs are required to specify an amino acid if the amino acid sequence is to be unconstrained but it was conceivable that two consecutive amino acids are coded by fewer than 6 base pairs but in this case there is a restriction on the possible amino acid sequences. This area was initiated by the physicist, George Gamow. I struggle a bit to see how it gained so much traction, this type of model was quickly ruled out by consideration of the amino acid sequences that we being established for proteins at the time. It turns out that amino acids are coded by three consecutive base pairs with redundancy (so several different base pair triplets code for the same amino acid). Also covered was the mechanism by which data passed from DNA to the ribosomes where protein synthesis takes place, important here are adaptor molecules which carry the appropriate amino acid to the site of synthesis.

Compared to the structure of DNA this work was a long difficult slog, involving intricate experiments with bacteria, bacteriophage viruses, bacterial sex, ultracentrifugation, chromatography and radiolabelling.

The final part of the book is on the elucidation of the structure of proteins, this was done using x-ray crystallography with the very first clear scattering patterns measured in the 1930s and the first full elucidation made in the late fifties. X-ray crystallography of proteins, containing many thousands of atoms is challenging. Fundamentally there is a issue, the “phase problem”, which means you don’t have quite enough information to determine the structure from the scattering pattern. This issue was resolved by heavy atom labelling, here you try to chemically attach a heavy atom such as mercury to your protein then compare the scattering pattern of this modified protein with that of the unmodified protein, which resolves the phase problem. Nowadays measuring the thousands of spots in an x-ray scattering pattern and carrying out the thousands and thousands of calculations required to resolve the structure is relatively straightforward but in the early days it was a massive manual labour.

As well as resolving structure a key discovery was made regarding the mode of action of proteins: essentially they work as adaptors between chemical distinct systems – when a molecule binds to one site on a protein it effects the ability of another type of molecule to bind to another site on the protein through changes in the protein structure induced by the first molecule’s binding. This feature opens up huge possibilities for cell biology – in the absence of this feature interactions between chemical systems can only occur if the participants in those systems interact with each other chemically.

It isn’t something I’d really appreciated properly but molecular biologists are quite organised in the organisms that they generally agree to work on. The truth is that there are uncountably many viruses and so to aid the progress of science one needs to select which ones to study: E. Coli, the T series bacteriophages, C. Elegans, D. Melanogaster and more recently the zebrafish, they almost play the part of an extra author.

Molecular biology was apparently dominated by physicists, I must admit I found this confusing in the past but Judson highlights the field as defined by its practioners: biochemistry is about energy and matter (and typically small molecules), molecular biology is about information (and typically macromolecules) – a more natural home for physicists.

I found the first and third parts an enjoyable read, my scientific background is in scattering so the technical material was at least familiar the central section on genetics I found fascinating but a bit of a slog. I’m somewhat in awe of the complexity of the experiments (and their apparent difficulty).

Looking back on my earlier book reviews, I read my comment on R.J. Evan’s book on historiography that history is a literary exercise as well as anything else, as a trained scientist this was something of an alien concept but in common with Koestler’s book the style of this book shines through.

 

Footnotes

My Evernotes

Book review: The Sleepwalkers: A History of Man’s Changing Vision of the Universe by Arthur Koestler

Sleepwalkers_ArthurKoestler.Another result of my plea for reading suggestions on twitter; this is a review and summary of Arthur Koestler’s book “The Sleepwalkers: A History of Man’s Changing Vision of the Universe”. The book is a history of cosmology running from Pythagoras, in the 6th century BC, to Galileo who spanned the end of the 16th century, just touching lightly on Newton. It traces a revolution from a time when the cosmos, beyond the earth, was considered different, stable and perfect, to a time when it was shown to be subject to earthly physics, be changeable and not perfect by any reasonable definition.

Kuhn’s language of paradigm shifts seems rather overused to me but here is an example of a true paradigm shift. The sleepwalkers in the title refers to the idea that the protagonists didn’t really know where they were headed with their ideas and quite often were lucky with errors which cancelled each other out.

The book starts with a cursory look at Babylonian and early Greek astronomy; despite considerable observational acumen their models of the universe were outright mythical. The Pythagoranean Brotherhood although in many senses still mystical started to think about the physics of the universe. I have a tendency to think of the ancient Greeks as one blob but as the book makes clear there is a huge span of time, and outlook, between Pythagoras, Aristotle and Plato and Ptolemy. Koestler is quite clearly disappointed with the Greeks: they make a promising start with Pythagoras, Aristarchus developed a heliocentric model for the solar system and then with Plato, Aristotle and Ptolemy they regress back to a geocentric model.

Following on from the Greeks the Middle Ages are covered, James Hannam in his book “God’s Philosophers” has covered why this period wasn’t all that bad in terms of intellectual development. Koestler is less sympathetic, his key accusations are that they philosophers of the middle ages were in thrall to the later Greeks and furthermore there were elements of Christian theology that abjured the pleasure of knowledge for knowledge’s sake.

After these preliminaries, Koestler turns to the core of his work: the cosmological developments of Copernicus, Tycho Brahe, Johannes Kepler and Galileo Galilei.

The model of the universe handed down from the ancient Greeks was one of circles (often referred to in this context as epicycles), they believed that motion in a circle was perfect, that the heavens were a separate, perfect realm and that therefore all motion in the heavens must be based on circular motion. Further, the model dominating at the end of their period, held that the earth lay at the centre of these circular motions. The only problem with this model is that it doesn’t fit well the observed motions of the sun, moon, Mercury, Venus, Mars, Jupiter and Saturn – the observable solar system which lay against an unchanging starry background. Or rather you can get a rough fit at the expense of stacking together a great number of epicycles – something like 50.

Copernicus’ contribution, published on his death in 1543, was to put the sun back at the centre of the universe. Copernicus led a rather uneventful life, was no sort of astronomical observer and only published his thesis at the end of his life at the strong urging of Georg Joachim Rheticus. He’d discussed his model fairly freely during his life, and his reasons for not publishing were more to do with fear of ridicule from his contemporaries rather than theological pressure. After his death his work, with the exception of the astronomical tables, sank into obscurity partly because it was a difficult read and partly because he managed to ostracise his former cheerleader, Rheticus. Copernicus’ model still holds to the epicycles of the Greeks, and only marginally reduces the complexity of the model.

Next up comes Johannes Kepler, interspersed with Tycho Brahe. Brahe was an astronomical observer and nobleman, funded very well by the Danish king; given his own island Hveen where he built his observatory. As a keen astrologer he began his observation programme when he found a conjunction of Jupiter and Saturn was poorly predicted by current astronomical tables – how can you cast an accurate fortune under these circumstances?

Kepler was a theoretician rather than an observer but also a keen astrologer. I emphasise this because these days astrology is not held in high regard but it is the father of observational astronomy. He had started to develop a model of the solar system based on the Platonic solids – something of a mystical exercise but realised he needed better data to support his model. Brahe was the man with the data, Kepler was only just in time though – he travelled to work with Brahe when Brahe moved to Prague less than 2 years later Brahe was dead. Nowadays we know Kepler for his three laws of planetary motion – it’s worth noting that Kepler’s laws are labelled retrospectively.)

He left copious records of his progress which Koestler traces in great detail, Kepler’s struggle to recognise that planetary orbits were ellipses was heroic and has something of a pantomime air to it – “They’re right in front of you!”. His approach was unprecedented in the sense that he sought to accurately model the very best, most recent measurements. Kepler also made some attempts at a physical model to describe the motions but ultimately he is remembered for the detailed description of their motion. Since it is not central to his theme, Koestler makes only passing reference to Kepler’s work on optics.

The penultimate figure in the story is Galileo, despite Kepler’s best efforts Galileo pretty much ignored him. Galileo gets quite short shrift from Koestler who feels that he brought his troubles with the Catholic Church upon himself. Reading this account his position is not unreasonable. Galileo’s two big contributions to the story are his promotion and use of the telescope, and his work on the motion of terrestrial bodies, the generalisation of which and application to the solar system was Newton’s great triumph. Cosmologically he was only later in his life a supporter of the somewhat retro Copernican model which was a cul-de-sac in terms of theoretical developments. At the time the Catholic Church, particularly the Jesuits, were interested in astronomy and not particularly hardline about the interpretation of Scripture to fit observations. Galileo wound them up both by claiming all newly observed celestial phenomena as his own and by putting the words of the Pope in the mouth of an idiot in one of his Dialogues.

This highlights two of the wider themes that Koestler brings to his book. At one point he describes his cast of characters as “moral dwarves”, he states this is relative to their scientific achievements but returns to this theme in the epilogue where he feels that our scientific developments have not been matched by our spiritual development. The second is the schism between science and the Church that began in this period, Koestler seems to put much of the blame for this on Galileo’s head feeling that it is by no means inevitable. In the epilogue he also draws a comparison between biological evolution and scientific developments, highlighting specifically that there are long periods of not that much happening and many diversions from the “true” path.

The book finishes with a brief mention of Newton’s synthesis of Kepler’s laws and Galileo’s dynamics to produce a model of the solar system which is close to that which we hold today.

This really is a rollicking good read! This is a relatively old book, published in 1959 and one might anticipate that it has not fully caught up with modern historiography however a brief look around the internet suggests that he is not criticised in any great sense. Koestler does tend to focus on a limited number of “great” individuals and goes for “firsts” but this perhaps is what makes it a good read.

Footnotes

My Evernotes for the book are here, last page of the book at the top!

Book Review: Alan Turing: The Enigma by Andrew Hodges

2012editionA brief panic over running out of things to read led me to poll my twitter followers for suggestions, Andrew Hodges’ biography of Alan Turing, Alan Turing: The Enigma  was one result of that poll. Turing is most famous for his cryptanalysis work at Bletchley Park during the Second World War. He was born 23rd June 1912, so this is his 100th anniversary year. He was the child of families in the Indian Civil Service, with a baronetcy in another branch of the family.

The attitude of his public school, Sherbourne, was very much classics first, this attitude seems to have been common and perhaps persists today. Turing was something of an erratic student, outstanding in the things that interested him (although not necessarily at all tidy) and very poor in those things that did not interest him.

After Sherbourne he went to King’s College, Cambridge University on a scholarship for which he had made several attempts (one for my old college, Pembroke). The value of the scholarship, £80 per annum, is quite striking: it is double the value of unemployment benefit and half that of a skilled worker. He started study in 1931, on the mathematics Tripos. His scholarship examination performance was not outstanding. Significant at this time is the death of his close school friend, Christopher Morcom in 1930.

King’s is a notorious hotbed of radicals, and at this time Communism was somewhat in vogue, a likely stimulus for this was the Great Depression: capitalism was seen to be failing and Communism offered, at the time, an attractive alternative. Turing does not appear to have been particularly politically active though.

During his undergraduate degree, in 1933, he provided a proof of the Central Limit Theorem – it turns out a proof had already been made but this was his first significant work. He then went on to answer Hilbert’s Entscheidungsproblem (German for “Decision Problem) in mathematics with his paper, “On computable numbers”1. This is the work in which he introduced the idea of a universal machine that could read symbols from a tape, adjust its internal state on the basis of those symbols and write symbols on the tape. The revelation for me in this work was that mathematicians of Turing’s era were considering numbers and the operations on numbers to have equivalent status. It opens the floodgates for a digital computer of the modern design: data and instructions that act on data are simply bits in memory there is nothing special about either of them. In the period towards the Second World War a variety of specialised electromechanical computing devices were built, analogue hardware which attacked just one problem. Turing’s universal machine, whilst proving that it could not solve every problem, highlighted the fact that an awful lot of problems could be solved with a general computing machine – to switch to a different problem, simply change the program.

Alonzo Church, at Princeton University, produced an answer for the Entscheidungsproblem  at the same time; Turing went to Princeton to study for his doctorate with Church as his supervisor.

Turing had been involved in a minor way in codebreaking before the outbreak of World War II and he was assigned to Bletchley Park immediately war started. His work on the “Turing machine” provides a clear background for attacking German codes based on the Enigma machine. This is not the place to relate in detail the work at Bletchley: Turing’s part in it was as something of a mathematical guru but also someone interested in producing practical solutions to problems. The triumph of Bletchley was not the breaking of individual messages but the systematic breaking of German systems of communication. Frequently, it was the breaking of a system which was critical in principle the Enigma machine (or variants of it) could offer practically unbreakable codes but in practice the way it was used offered a way in. Towards the end of the war Turing was no longer needed at Bletchley and he moved to a neighbouring establishment, Hanslope Park where he built a speech encrypting system, Delilah with Don Bayley – again a very practical activity.

Following the war Turing was seconded to the National Physical Laboratory where it was intended he would help build ACE (a general purpose computer), however this was not to be – in contrast to work during the war building ACE was a slow frustrating process and ultimately he left for Manchester University who were building their own computer. Again Turing shows a high degree of practicality: he worked out that an alcohol water mixture close to the composition of gin would be almost as good as mercury for delay line memory*. Philosophically Turing’s vision for ACE was different from the American vision for electronic computing led by Von Neumann: Turing sought the simplest possible computing machinery, relying on programming to carry out complex tasks – the American vision tended towards more complex hardware. Turing was thinking about software, a frustrating process in the absence of any but the most limited working hardware and also thinking more broadly about machine intelligence.

It was after the war that Turing also became interested in morphogenesis2 – how complex forms emerge from undifferentiated blobs in the natural world, based on the kinetics of chemical reactions. He used the early Manchester computer to carry out simulations in this area. This work harks back to some practical calculations on chemical kinetics which he did before going to university.

Turing’s suicide comes rather abruptly towards the end of the book. Turing had been convicted of indecency in 1952, and had undergone hormone therapy as an alternative to prison to “correct” his homosexuality. This treatment had ended a year before his suicide in 1954. By this time the UK government had tacitly moved to a position where no homosexual could work in sensitive government areas such as GCHQ. However, there is no direct evidence that this was putting pressure on Turing personally. Reading the book there is no sick feeling of inevitability as Turing approaches the end you know he has.

Currently there are calls for Turing to be formally pardoned for his 1952 indecency conviction, personally I’m ambivalent about this – a personal pardon for Turing is irrelevant: legal sanctions against homosexual men, in particular, were widespread at the time. An individual pardon for Turing seems to say, “all those other convictions were fine, but Turing did great things so should be pardoned”. Arnold Murray, the man with whom Turing was convicted was nineteen at the time, an age at which their activities were illegal in the UK until 2000.

What struck me most about Turing from this book was his willingness to engage with practical, engineering solutions to the results his mathematical studies produced.

Hodges’ book is excellent: it’s thorough, demonstrates deep knowledge of the areas in which Turing worked and draws on personal interviews with many of the people Turing worked with.

Footnotes

1. “On computable numbers, with an application to the Entscheidungsproblem”, A.M. Turing, Proceedings of the London Mathematical Society 42:230-265 (1936).

2. “The Chemical Basis of Morphogenesis”, A.M. Turing, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, Vol. 237, No. 641. (Aug. 14, 1952), pp. 37-72.

3. My Evernotes for the book

4. Andrew Hodges’ website to accompany the book (link)

Book review: A computer called LEO by Georgina Ferry

AComputerCalledLEOThis is a review of “A Computer called LEO” by Georgina Ferry, recounting the story of the first computer developed for business use by J. Lyons & Co, the teashop and catering company.

Lyons formed in 1884, a spin-off from a family tobacconist company whose traveling salesman realised that there were few reliable teashops around the country, furthermore catering at large events such as the Great Exhibition was poor. Over the next 30 years or so the business grew, with a chain of teashops, and smarter establishments such as the Corner Houses and Trocadero. The teashops were supplied by Lyons own manufacturing and delivery service.

By the 1930s Lyons had approximately 30,000 workers, as such it was one of Britain’s larger employers. 300 clerks were used to tot up daily takings on mechanical calculators. Clerical work had risen in important during the second half of the 19th century with numbers rising from 70,000 in Britain in 1851 to 2 million in 1901. The company had a department of Systems Research led by a Cambridge mathematician, John Simmons, who the company had recruited in 1923, the hiring of such a graduate was a novelty at the time. The Systems Research department was interested in the efficient running of the business.

By this time various items of office machinery were commonplace, things such as filing cabinets, typewriters, mechanical calculators, and punch card readers. Telephone exchanges were in place, the electronic valve had been invented in the early years of the 20th century and magnetic storage devices were starting to become available. By the 1930s people such Oliver Standingford in Lyon’s Stock Department were talking about machines which would combine these elements, although he was not clear on the detail of how this would be done.

The Second World War then intervened, Lyons cut table service from its teashops as labour went short. Various people gained useful experience in electrical engineering through the wartime developments in radar, and possibly codebreaking. We now know that Colossus, a computer used for code breaking, was built at Bletchley Park during the war but it did not become public knowledge until 1974. In the US ENIAC had been developed at the Moore School in Philadelphia to do artillery range calculations. This was not a secret and immediately after the war, Oliver Standingford and Raymond Thompson visited from Lyons; they had a broad brief to investigate American business methods but it was ENIAC which really captivated them. Fortunately, their US trip put them in touch with more local expertise in the form of Douglas Hartree at Cambridge University who was building a computer, EDSAC, for the Mathematical Laboratory.

Lyons decided fairly quickly to construct their own computer, which was to be based on the EDSAC machine; US machines such as they were could not be purchased because of currency restrictions and there were no computer manufacturers in the UK. From the start LEO I (the first computer) was different, Simmons saw the computer fitting into a system of “scientific management” and as such LEO was crafted to exactly fit the role he foresaw for it based on detailed knowledge of the company’s processes. In some senses computing for business was more demanding than the computation done in the Mathematical Laboratory and other scientific laboratories: business computing had large demands for input and output (imagine a payroll system – it needs to read in details of each employee and print out the results), it had lower tolerance for failure (payroll failing to run has a serious impact on employees) and calculations could be more “complex” than mathematical ones in the sense that more steps in calculation and more conditionality was required. It was at Lyons that the art of flowcharting was developed. The first live duty that LEO carried out was in 1951, it was made public in 1955. It’s interesting to note that Charles Babbage had highlighted the potential for automation in both manufacturing and mathematical operations in his book “On the Economy of Machinery and Manufacturers”, published in 1832.

There were to be two further LEO computers, developed by a separate company, Leo Computers Ltd however things did not go well. The computers themselves were technically advanced, and the Leo Computers method of going into a business and closely examining their processes before writing programs and delivering a system combining both hardware and software usually had excellent results. However, this had the unfortunate side-effect of losing their best staff to their clients. Other problems were afoot: Leo Computers Ltd although nominally a separate company was under-resourced both financially and in personnel with development engineers also acting as salesman. The parent company, Lyons was struggling – victim of a family business mentality which put increasingly useless family members at the heads of divisions.

In 1964 Leo Computers Ltd was merged with English Electric, with Lyons divesting itself of any responsibility, following this union the LEO line died although the final computers in the series were installed by the Post Office, and continued to run there, in places, until 1981.

In contrast in the 1960s IBM were able to make an investment of $5billion on their System 360 computers – a compatible range designed to fit every need. They had a ready market in the US both of businesses willing to buy, unlike their British counterparts, and a government who bought locally first. Faced with this opposition, the British computer industry struggled to compete.

Focusing on the LEO computer makes this a human scale story with central cast of characters, but it also provides a wider view of the field in the years after the Second World War. The book makes clear how J. Lyons & Co had a system of management, and personnel in place which were ripe for computerisation; the developments in the 1930s made it clear that electronic computers were in the air. Large scale failures of computer systems in both public and private sectors are onging, John Simmons was rather insightful in his intimate coupling between business process and software system.

References

1. My Evernotes are here

2. The web page of the Leo Computer Society is http://www.leo-computers.org.uk/

Book review: Measure of the Earth by Larrie D. Ferreiro

Measure-of-the-EarthThis post is a review and summary of Larrie D. Ferreiro’s book “Measure of the Earth” which describes the French Geodesic Mission to South America to measure the length of a degree of latitude at the equator. The action takes place in the 2nd quarter of the 18th century, the Mission left France in 1735 with the first of its members returning to Europe in 1744.

The book fits together with The Measure of All Things by Ken Alder, which is about the later French effort to measure a meridian through Paris at the turn of the Revolution in order to define the metre, The Great Arc by John Keay on the survey of India and Map of a Nation by Rachel Hewitt on the triangulation survey of the United Kingdom.

The significance of the measurement was that earlier triangulation surveys of France had indicated that the earth was not spherical, as had pendulum measurements made by Jean Richer in Guyana in 1671 which showed a pendulum there ran 2:28 slower there than in Paris. A Newtonian faction believed that the earth was flattened at the poles, its rotation having led to a bulging at the equator. A Cartesian school held that the earth was flattened around the equator and bulged at the poles, this was not a direct result of work by Rene Descartes but seems to have been more a result of scientific nationalism. Spoiler: the earth is flattened at the poles.

From a practical point of view a non-spherical earth has implications for navigation – ultimately it was found that polar flattening would lead to a navigational error of approximately 20 miles in a trans-Atlantic crossing although at the time of the Mission it was believed it could have been as much as 300 miles. Politically the Mission provided an opportunity for the French to form an alliance with the Spanish, and to get a close look at the Spanish colonies in South America which had provided huge wealth to Spain over the preceding 200 years. Ferreiro provides a nice overview of the L’Académie des Sciences under whose aegis the mission was conducted,and of the Comte de Maurepas, French minister of the navy and sponsor of the Mission.

The core members of the Geodesic Mission were Pierre Bouguer, Charles-Marie de La Condamine, and Louis Godin they were accompanied by Spanish Naval cadets Antonio de Ulloa y de la Torre-Guiral  and Jorge Juan y Santacilia. Other members were Joseph de Jussieu (doctor and botanist), Jean-Joseph Verguin (engineer and cartographer), Jean-Louis de Morainville (draftsman and artist), Theodore Hugo (instrument maker), Jean-Baptiste Godin des Odonais and Jacques Couplet-Viguier.

Louis Godin, an astronomer, was the senior academician and nominal leader of the mission. Pierre Bouguer, was a mathematician, astronomer and latterly geophysicist: as well as the measurement of the degree of latitude he also attempted to measure the deflection of a plumb-line by the mass of a mountain – an experiment which Nevile Maskelyne was to conclude successfully in 1775, I wrote about this here. Bouguer also wrote a treatise on ship building whilst away in South America. Charles-Marie de La Condamine could best be described as an adventurer although he was also a competent mathematician and geographer, it was his more lively writing on life in South America which would have a bigger impact on their return to Europe.

The scheme for the determination of the length of a degree is to measure the length of a meridian (a line of longitude) close to the equator by triangulation, making a ground measurement baseline to convert the angular measurements of the triangulation survey into distances and a second baseline to confirm your workings; the latitudes of the ends of the triangulation survey are determined astronomically by measuring the positions of stars. I’ve read of this process before, the new thing I learnt was the method for aligning up your zenith sector with the meridian – which I’m tempted to try at home.

These measurements were done in the area around Quito, in modern Ecuador (named after the equator), the endpoints of the survey were at Quito in the north, close to the equator and Cuenca approximately 200 miles south. During the survey, through the Andes, the team scaled peaks as high as Mont Blanc (and suffered altitude sickness for their troubles) which would not be climbed for another 50 years. The survey was repeated in the early years of the 20th century and even then it took 7 years – the same length of time as the original survey, due to the transport difficulties presented by the terrain.

The work of measuring the meridian was made more difficult by the journey to get there (which took the best part of a year), the terrain and conditions when they got there (mountainous and cloudy), the poor leadership of Godin, local political machinations and the mother country cutting them loose financially. Ferreiro makes a lot of Godin’s poor leadership, some of which is justified – he spent Mission money on prostitutes and regarded the Mission funds as his own purse. Frequently the Mission split into two groups, one containing Bouguer and La Condamine and the other Godin – sometimes this is quite appropriate, in duplicating measurements for consistency whilst on other occasions it is simply fractiousness.

To a degree the Mission was scooped by measurements made above the Arctic Circle in Lapland, this mission was also promoted by the L’Académie des Sciences, led by Pierre Maupertuis (a rival of Bouguer) and Anders Celsius. It completed its work in 6 months, well before the Geodesic Mission had finished their work, discovering that the poles of the earth were flattened. However, doubts remained over the results and the full determination required the data from the equator. Bouguer presented this on his return to France, to great acclaim, showing that the earth was flattened by 1 part in 179 (later measurements showed that the flattening is actually smaller at 1 part in 298).

The Mission spawned a wide range of publications by its members, covering not only the geodesic component of the work but also regarding life and nature in South America. Ferreiro credits La Condamine’s work in particular has setting the context of how South America was viewed for quite some time after the mission. The Spanish officers also made in impact an highlighting colonial misrule back to their home country. Arguably the international collaborative elements of the Mission set the scene for the measurements of the transit of Venus later in the 18th century.

Ferreiro makes a comparison between the French Geodesic Mission, which was centrally run by the state and the British Longitude Prize, which although state funded was privately executed, implying that the former was superior. It’s not clear to me whether he’s engaging in a degree of hyperbole here, since the Mission was to some degree an organisational car-crash and was in large part funded from La Condamine’s own purse at the time. Furthermore, L’Académie des Sciences also awarded prizes – having copied the British government in this and the Royal Society was from the outset a very internationally oriented organisation. So the picture as Ferreiro presents it is something of an over-simplification.

I found the book very readable, its clearly based on a large quantity of primary source material and covers a great deal beyond the simple mechanics of the Geodesic measurements.

Footnotes

My Evernotes on the book are here.