Tag: History

Book review: The Map that Changed the World by Simon Winchester

william_smith_map_big These are some notes on “The Map that changed the World: The Tale of William Smith and The Birth of a Science” by Simon Winchester. It is the story of the creation, by William Smith, of the first geological map of England and Wales, and the first such map on this scale in the world. A geological map shows the distribution of different rock types on the earth’s surface. Sedimentary rocks are laid down in horizontal layers, known as strata, subsequently these layers may be deformed and distorted. Therefore the distribution of rock types on the surface is a slice this distorted underground structure. William Smith’s work went beyond simple mapping the surface by recording what went on under the surface.

William Smith was born in 1769, as the industrial revolution was getting under way. Enclosures, coal mining, canal building and drainage work were building blocks to Smith’s maps; as a young man he became involved in surveying as a result of enclosures around his birthplace of Churchill, near Oxford. Following this experience in surveying he became involved in coal mining in Somerset. Here he saw directly the strata beneath the surface and learnt their individual character. Then he was involved in surveying for a canal to link the Somerset coal mines to the main canal system. This combines surveying with geology, since the type of rock the canal goes over determines how easy it is to dig the canal and whether it leaks.

A key insight was that the fossils found within a strata could be used to exactly correlate two distinct outcrops – in the absence of fossils two outcrops might look very similar but actually belong to different strata. Secondly, strata always appeared in the same order: A always comes below B, which comes below C. In places, because subsequent distortion of the rock, this ordering may not be obvious. It was Smith who was responsible for “” which identified the order of strata occurring in England.

Fossils had become collectors items around the time of Smith’s birth. As a result of the increasing awareness of the fossils in the surroundings, sea animals many miles from the sea and fossils with no living counterparts, the biblical account of the creation of the earth was becoming increasingly shaky. In a sense it is geology that brought Darwin to his theory of evolution, the study of rocks makes it increasingly clear that the world is unimaginably old and that in this vast space of time there is room for evolution. In common with Darwin, Smith’s great work was a long time in preparation.

William Smith was dogged by financial problems, he had taken up a mortgage to buy a substantial estate whilst surveying for a canal and was then promptly sacked. Throughout his life he appears to have spent rather enthusiastically, sometimes simply to be seen as having an address in the right place. Ultimately William Smith went to debtor’s prison for a short period in 1819, a few years after his map had first been published. On his release he moved to Yorkshire where he worked on various minor projects in obscurity. He was later returned to the public eye to receive the first Wollaston Medal from the Geological Society of London, along with the recognition he deserved.

Earlier the Geological Society, under the presidency of George Greenough treated Smith shamefully: plagiarising a substantial chunk of his work on the geological map to produce their own version which was published not long after his, at lower cost. Furthermore they refused him admission to the society largely, it seems, on the basis of class. Smith had some previous experience of being plagiarised whilst in working in Bath, by a reverend! Although the subject of class arises a number of times through the book it doesn’t seem to have caused Smith huge impediment, aside from his initial contact with the Geological Society, throughout his life he worked with the landed gentry on various projects and it seems he was valued for this work. In addition he was apparently quite well known to Sir Joseph Banks – long time President of the Royal Society.

It’s striking that in addition to the Royal Society in London, the rest of the country was apparently riddled with philosophical societies, Bath is mentioned in particular in this regard but what really brought it home to me was mention of the Scarborough Philosophical Society, somewhere one wouldn’t now associate with such things.

The book is written in something of a docu-drama style with some sections reading a little like a novel, this is a mixed blessing to my mind – it enhances readability however it always leaves me with the fear that I’m being tricked into believing detail that doesn’t exist. I feel something of a connection to this work; I grew up on the Jurassic coast in Dorset (although this in a time before the marketing term had stuck) and did geology AO level whilst at school. It’s tempting to believe that England was the perfect spot for William Smith to be born: the geology of England is very varied and the industrial revolution provided a perfect excuse for detailed rummaging around in the rocks.

You can see the modern, interactive version of the geological map of Britain here.

Science is Vital – history repeating 1667

I’m reading Thomas Sprat’s “History of the Royal Society of London, for the improving of Natural Knowledge“* published in 1667. He’s just mentioned that following the return of Charles II much spending has been made on public works and goes on to say:

This general Temper being well weigh’d; it cannot be imagin’d that the Nation will withdraw its Assistance from the Royal Society alone; which does not intend to stop at some particular Benefit but goes to the Root of all noble Inventions, and proposes an infallible Course to make England the Glory of the Western World.

This seems terribly relevant to current circumstances, he does spoil it slightly by going on to say:

There is scarce any Thing has more hindered the true Philosophy than a Vain Opinion, that men have taken up, that Nothing could be done in it, to any purpose, but upon a vast Charge, and a mighty Revenue.

 Old Sprat had a fine way with words!

*Quotes are from p78-79

Book Review: The Fellowship by John Gribbin

an_experiment_on_a_bird_in_an_air_pump_by_joseph_wright_of_derby_1768 I’ve written previously about the Royal Society via the medium of book reviews: Seeing Further, Joseph Banks and Age of Wonder, and also in a data mangling exercise. This post is about “The Fellowship: The Story of the Royal Society and a Scientific Revolution” by John Gribbin, it describes the scientific world before the Society and the founding of the Royal Society. As with many books about this period, the front cover of my copy features “An experiment on a bird in the Air pump” by Joseph Wright of Derby and so that is the image I use to decorate this post. Following my usual scheme this review is really an aide memoire as much as a review.

The book opens with a set of brief biographies, starting with William Gilbert of Colchester (1544-1603), and his scientific study of magnetism: de Magnete (1600). This work on magnetism was unusual for it’s time in that it was very explicitly based on experimental observation, rather than the “philosophising” of Aristotelian school which imputed that the world could be understood simply by thinking. William Gilbert is relatively little known (ok – I didn’t know about him!), perhaps because his work was in a relatively narrow field and was superseded in the 18th century by work of people like Michael Faraday furthermore Gilbert seems to have spent most of his life practicing as a doctor with his scientific work playing only a small part of his life.

Next step is Galileo Galilei (1564-1642). He continued in the tradition of William Gilbert, eschewing the philosophical approach for experiment. In contrast to Gilbert, Galileo made contributions across a wide range of science for a long period – promulgating technology such as telescopes, microscopes and computing devices. This likely explains his greater fame. A detail that caught my eye was that as a professor of mathematics at the University of Pisa he was paid 60 crowns per year, whilst the Professor of Medicine gained 2000 crowns. For many early scientists, medical training appears to be the major scientific training available.

Francis Bacon (1561-1626) was more important as a parliamentarian, lawyer and courtier than a scientist. I link reluctantly to wikipedia in this instance, since in the opening paragraph they seem to be repeating the myth that he met his end through stuffing snow into a chicken to see if this helped preservation. His fame as a founding father of modern science is based largely on a book he didn’t write in which he intended to describe how a scientist should work – a scientific method. Perhaps more notably he had a vision as to how science might function in society at a time when there was no such thing as a scientist. It is apparently from Bacon that Isaac Asimov got his “Foundation”; it is the name of an organisation of scientific Fellows found in Bacon’s fictional work New Atlantis. Finally we are introduced to William Harvey (1578-1657), who identified the circulatory system for blood in the human body by a process of observation and experiment (published in De Motu Cordis (1628)) he was primarily a physician.

The point of this preamble is to say that, as the founding of the Royal Society approached, a number of people had started doing or proposing to do a new kind of science (or rather natural philosophy as it would have been called). The new natural philosophy involved doing experiments, and thinking about them – it was experimental science in contrast to the “received wisdom” from the ancient Greeks which was certainly interpreted to mean at the time that thinking was all that was required to establish true facts about the physical world. It’s not really accurate to say that one person did this and everything changed: rather that a shift had started to take place in the middle years of the 16th century. The foundation of the Royal Society can be seen as the culmination of that shift.

The Royal Society was founded at Gresham College in London on 28th November 1660, although it’s origins lay in Oxford where many of the group that would go on to form the Society had been meeting since the 1640’s. The Royal charter of the Society was agreed a couple of years later. The central figure in the Oxford group was John Wilkins (~1614-1672). The original Society included Christopher Wren, Robert Boyle and Robert Hooke amongst others. What striking is the political astuteness of the founding fathers as the monarchy returned to England in the form of Charles II, the first President, Viscount Brouncker, was a Royalist and the Society clearly identified that a Royal seal of approval was what they required from the very beginning. The Society had an air of purposefulness about it, not of airy philosophising for the amusement of gentlemen. The Society started publishing the worlds first scientific journal, “Philosophical Transactions”, and commissioning a history of their founding by Thomas Sprat only a few years later.  As a scientist I have picked out those names that mean most to me, however it’s very clear that the Royal Society was more than a group of scientists meeting to talk about science and the other less scientifically feted Fellows were equally important in the success of the Society.

Gribbin’s book then goes on to consider three men important in the early life of the Royal Society. Firstly: Robert Hooke (1636-1703), originally scientific assistant to Robert Boyle (1627-1691) who became the Society’s first “Curator of Experiments”. Prior to his appointment the Fellows appeared to be poorly organised in terms of providing weekly demonstration experiments for the Society’s education. Hooke was a really outstanding scientist, a skilled draftsman and maker of scientific equipment. The reason Hooke is not better known is largely down to Isaac Newton, with whom he had a longstanding feud and who outlived him. Newton (1643-1727) does not need further introduction as a scientist, his role in the Royal Society was to provide scientific gravitas (after Hooke had died) he was also President of the Society for the period 1703-27. Edmond Halley (1656-1742) was more important to the Society on the administrative side, he is chiefly remembered from the scientific point of view for his prediction of the return of a comet calculated using Newton’s theory of gravitation. He also spent a great deal of time persuading Newton to publish and trying to extract data from Flamsteed (the Astronomer Royal). In addition to this he invented a diving bell, wrote the first article on life annuities, published on the trade winds and monsoons, made observations of the stars of the Southern hemisphere and went on several scientific expeditions.

Some miscellaneous thoughts that arose as I read:

  • Royal patronage, in this instance by Charles II, was important for the Society in this period and later by George III – as described a little in Age of Wonder.
  • On the face of it astronomy is blue-skies research, but at the time the precise measurement of the position of the stars was seen as a route to determining the longitude – an important practical problem.
  • It’s notable that the persistent anecdotes about the scientists mentioned here i.e. Francis Bacon and the frozen chicken, Newton and the apple falling from the tree and Galileo dropping things from towers, originate from the earliest biographies often written by people who knew them personally. These anecdotes have later been found to be rather fanciful, but nevertheless have persisted.
  • There was serious feuding going between scientists in the early years of the Society!

Overall I enjoyed this book, although it does sometimes have the air of a collection of short biographies of men who are already relatively well known. The most interesting part to me was the core part around the founding of the Society, bringing in some of the lesser known members and also highlighting the importance of the non-scientific aspects of the Society in it’s success.

In terms of scientific history reading, where next? “God’s Philosophers” by James Hannam seems relevant to understanding scientific activities prior to those covered in this book. A deeper investigation into Edmond Halley seems worthwhile, and I should also make another attempt at the Thomas Sprat history of the Royal Society.

Further reading

  1. Joseph Banks” by Patrick O’Brian.
  2. “Seeing Further” edited by Bill Bryson.
  3. God’s Philosophers” by James Hannam.
  4. Age of Wonder” by Richard Holmes.
  5. The Curious Life of Robert Hooke” by Lisa Jardine.
  6. Hostage to fortune” by Lisa Jardine and Alan Stewart, which is a biography of Francis Bacon.
  7. The History of the Royal Society of London, for the Improving of Natural Knowledge” by Thomas Sprat.
  8. Isaac Newton: The Last Sorcerer” by Michael White.

Book review: The World of Gerard Mercator by Andrew Taylor

Once again I have been reading, this time “The World of Gerard Mercator” by Andrew Taylor. As before this blog post could be viewed as a review or, alternatively, as some notes to remind of what I have read. Overall I enjoyed the book, it provides the right amount of background information and doesn’t bang on interminably about minutiae. I would have liked to have seen some better illustrations, but I suspect good illustrations of maps of this period are hard to come by and a full description of Mercator’s projection was probably not appropriate.

The book starts off with some scene setting: at the beginning of the 16th century the Catholic church were still keen on Ptolemy’s interpretation of world geography in fact to defy this interpretation was a heresy and could be severely punished. Ptolemy had put down his thoughts in Geographia produced around 150AD, which combined a discussion of the methods of cartography with a map of the known world. As a precedent Ptolemy’s work was excellent, however by the time of the 16th century it was beginning to show it’s antiquity. Geographical data, in Ptolemy’s time, from beyond the Roman Empire was a little fanciful, and since the known world was a relatively small fraction of the surface of the globe the problems associated with showing the surface of a 3D object on a 2D map were not pressing. Ptolemy was well aware of the spherical nature of the world, Eratothenes had calculated the size of the earth in around 240BC, he stated that a globe would be the best way of displaying a map of the world. However, a globe large enough to display the whole world at sufficient detail would have to be very large, and thus difficult to construct and transport.

Truly global expeditions were starting to occur in the years before Mercator’s birth: Columbus had “discovered”  the West Indies in 1492, John Cabot made landfall on the North American landmass in 1497. Bartolomeu Dias had sailed around the Southern tip of Africa in 1488, Vasco da Gama had continued on to India in 1497, around the Cape of Good Hope. The state of the art in geography could be found in Waldseemüller’s map of 1507, showing a recognisable view of most of our world. Magellan‘s expedition would make the first circumnavigation of the globe in the early years of Mercator’s life (1519-1522).

Mercator was born in Rupelmonde in Flanders on 5 March 1512, he died 2 December 1594 in Duisburg in what is now Germany at the age of 82. This was a pretty turbulent time in the Netherlands, the country was ruled by Charles V (of Spain) and there appears to have been significant repression of the somewhat rebellious and potentially Protestant population. Mercator was imprisoned for heresy in Rupelmonde in February 1543, remaining in custody until September, many in similar circumstances were executed, however Mercator seems to have avoided this by a combination of moderately powerful friends and a lack of any evidence of heresy.

Mercator’s skill was in the collation and interpretation of geographical data from a wide range of sources including his own surveys. In addition he was clearly a very skilled craftsman in the preparation of copperplate engravings. He was commercially successful, manufacturing his globe throughout his life, as well as many maps and scientific instruments for cartographers. He also had a clear insight into the power of patronage.

His early work was in the preparation of maps of the Holy Land (in 1537) and Europe (in 1554), along with a globe produced in 1541. The globe seems to be popular amongst reproducers of antiquities, you can see details of it on the Harvard Map Collection Website.

Mercator is best known for his “projection”, in this context a projection is a way of converting the world – which is found on the surface of a 3D sphere into a flat, 2D map. Mercator introduced his eponymous projection for his 1569 map of the world, illustrated at the top of this post. The particular feature of this projection is that if you follow a fixed compass bearing you find yourself following a straight line on the Mercator projected map. This is good news for navigators! The price you pay for this property is that, although all regions are in the correct places relative to each other, their areas are distorted so those regions near the poles appear much larger than those near the equator. Mercator seems to have made little of this discovery, nor described the method by which the projection is constructed – this was done some time later, in 1599, by Edward Wright. Prior to maps following Mercator’s projection navigation was a bit hit and miss, basically you headed up to a convenient latitude and then followed it back to your destination – an inefficient way to plan your course. If you’re interested in the maths behind the projection see here.

In terms of it’s content the 1569 map shows Europe, Africa and a large fraction of Asia much as we would see it today, certainly in terms of outline. The Eastern coast of North and South America is fairly recognisable. The map fails in it’s representation of the West coast of America – although to give credit where it is due, it at least has a west coast. The landmasses indicated at the northern and southern poles are close to pure fantasy. The Southern continent had been proposed by Ptolemy as a counterbalance to the known Northern continents – with no supporting evidence. Exploration of the far North was starting to occur during Mercator’s life, with expedition such as that of Frobisher.

Mercator is also responsible for the word “atlas” to describe a book containing a set of maps, in this instance he coined the term to describe the volumes of maps he was preparing towards the end of his life, the last of which was published published posthumously by his son, Rumold, in 1595.

Following my efforts on Joseph Banks, I thought I’d make a map of significant locations in Mercator’s life. You can find them here in Google Maps, zoom out and you will see the world in Mercator projection – a legacy from a man that lived nearly 500 years ago.

Book review: Joseph Banks by Patrick O’Brian

Once again I venture into my own idiosyncratic version of the book review: more reading notes than review. This time I’m reading the biography of Joseph Banks by Patrick O’Brian. Joseph Banks has popped up regularly in my recent reading about the Royal Society and the Age of Wonder. He was on Captain Cooks trip to Tahiti, and then went on to serve as President of the Royal Society for 42 years – the longest term of any President. The Inelegant Gardener has been reading about Kew and various plant hunters, and Sir Joseph crops up there too. Despite his many talents, there are relatively few biographies of Banks, and he is relatively unknown.

Sir Joseph was born of a wealthy family from Lincolnshire, he was educated at Harrow, Eton and then Oxford University. At some point in his school years he became passionately interested in botany, and whilst at Oxford he went to the lengths of recruiting a botany lecturer from Cambridge University to teach him. The lecturer was Daniel Solander, a very talented student of Carl Linnaeus, who would later accompany Banks on his trip around the world with Captain Cook, they would remain close friends until Solanders death in 1782.

Sir Joseph’s first trip abroad was to Newfoundland and Labrador in 1766. The area had been ceded to Britain by France, but there was an international fleet of fishing boats operating in it’s waters. Banks made his trip as a guest Constantine John Phipps on HMS Niger, which was sent to the area to keep an eye on things. It seems fairly common for gentleman to travel as guests on navy ships of the time: this was broadly the scheme by which Charles Darwin would later join HMS Beagle on his trip around the world.

1768-1771 finds Banks circumnavigating the world on Captain James Cook’s ship, HMS Endeavour, in Cook’s first such expedition. This voyage was funded by George III following an appeal from the Royal Society for a mission to Tahiti in order to observe the transit of Venus. Banks paid for the contingent of naturalists from his own funds. The stay in Tahiti is much written about largely, I suspect, because they remained there some time. Following their stay in Tahiti, they continued on to New Zealand, which they sailed around rather thoroughly but seemed to land on infrequently as a result of hostile responses from the inhabitants. They then sailed along the East coast of Australia, stopping off on the way at various locations but most particularly Botany Bay. At the time the the existence of Australia was somewhat uncertain in European minds. There’s a rather fine map of their course here and Banks’ journals are available here.

Through the chapters on both these voyages, O’Brian makes heavy use of the diaries of Banks, quoting from them extensively and often between block quotes further quoting Banks’ own words. This may work well for those of a more historical bent, but I felt the need for more interpretation and context. It often feels that O’Brian is more interested in the boats than the botany.

The next episode is somewhat odd: Banks was planning a second trip around the world with Captain Cook but he never went. At almost the last minute he withdrew on the grounds that the Admiralty would not provide adequate accommodation for him and his team scientists. The odd thing is that, despite what appears a fractious falling out, Banks appeared to remain very good friends with both Cook and Lord Sandwich, First Lord of the Admirality at the time. I wonder whether Banks, remembering the 50% mortality rate of his previous voyage with Cook, understandably got cold feet. As a consolation he went off to Iceland in 1772 for a little light botanising, where he scaled Hekla.

Despite recording an extensive journal, collecting a considerable number of anthropological, botanical and zoological specimens as well as a large number of drawings by his naturalist team Banks never published a full report of his Tahiti voyage. He showed the artefacts at his home in Soho Square and prepared a substantial manuscript, with many fine plates but seems to have lost interest in publishing close to the end of the exercise. Throughout his life he produced relatively few publications, this may be a reflection of his dilettante nature: he was skilled in many areas but not deeply expert and so published relatively little.

Banks was elected to the Royal Society whilst on his world tour, and later become President for a 42 year term, until his death in 1820. He made some effort to improve the election procedures of the Society, at the time of his election being in the right social class appeared to be more important than being a scientist. As part of his role as President he was heavily involved in providing advice to government including a proposal to use Australia as a colony for convicts. He was also heavily involved in arranging the return of scientists and others caught up in the wars following the French revolution. In addition to his work at the Royal Society, he also helped found the Africa Association and the Royal Academy.

Kew gardens was created a few years before Joseph Banks became it’s unofficial superintendent (in around 1773) and then director. He had a pivotal role in building the collection: commissioning plant collectors to travel the world, all backed by George III. I must admit that my recent reading has led me to see George III in a new light: as an enthusiastic supporter of scientific enterprises, rather than a mad-man. George III and Banks also collaborated on a programme to introduce merino sheep from Spain, which had potentially huge commercial implications. Banks was seen as a loyal courtier.

Through his life it’s estimated that Banks wrote an average of 50 letters per week almost entirely in his own hand, although they were fantastically well organised during his life, on his death they were rather poorly treated and dispersed. Warren R. Dawson produced a calendar of the remaining correspondence. I’ve not found this resource online but a treatment like this Republic of Letters would be fantastic.

I suspect a comprehensive biography of Joseph Banks is exceedingly difficult to write; this one seemed to cover voyaging well but I felt was lacking in botany and his scientific activities at the Royal Society. Perhaps the answer is that a comprehensive biography is impossible, since he had interests and substantial impacts in so many areas. There was simply no end to his talents!

Footnote
In the style of a school project I have made a Google Map with some key locations in Joseph Banks’ life.